DIVISION 800

MISCELLANEOUS DETAILS

GENERAL NOTES:

1. The sidewalk width shall be paved in all cases.
2. All residential or commercial entrances 10% and over shall be paved.

NOTES ON MAXIMUM ENTRANCE PROFILES:

1. These profiles are a guide for the majority of cases, but should be field checked when the main line grade is steep (4\% to 6\% or greater) or the angle of approach to the entrance is unusual.
2. Generally the majority of entrances on a project will be built with flatter profiles than these maximum coses.
3. When grading entrances which are flatter than the maximum profiles the following rule of thumb should be used. Do not exceed a grade \% change of more than 9\% in a 6 foot increment of entrance length. This applies to both up and down profiles.
4. Entrances with grades exceeding 15% must have a design ${ }^{1}$ exception. Field entrances with grades exceeding 22% must hove a ${ }^{1}$ design exception.
5. Any design change to an existing entrance that is steeper than (+ or -) 6% that adversely changes the grade (+ or -) by more than 3\% will require a ${ }^{1}$ design exception.
${ }^{1}$ Design exception to be approved by Program Manager (or designee).

ENTRANCES ON SIDEWALK SECTIONS

1. The first 3 feet shown as povement shall be paved only when abutting a paved area.
2. All residential or commercial entrances 10\% and over shall be paved.

NOTES ON MAXIMUM ENTRANCE PROFILES:

1. These profiles are a guide for the majority of cases, but should be field checked when the main line grade is steep (4% to 6% or greater) or the angle of approach to the entrance is unusual.
2. Generally the majority of entrances on a project should be built with flatter profiles than these maximum coses.
3. When grading entrances which are flatter than the maximum profiles the following rule of thumb should be used. Do not exceed a grade \% change of more than 9\% in a 6 foot increment of entrance length. This applies to both up and down profiles.
4. Entrances with grades exceeding 15\% must have a ${ }^{1}$ design exception. Field entrances with grades exceeding 22% must have a ${ }^{1}$ design exception.
5. Any design change to an existing entrance that is steeper than (+ or -) 6% that adversely changes the grade (+ or -) by more than 3\% will require a ${ }^{1}$ design exception.
${ }^{1}$ Design exception to be approved by Program Manager (or designee).

ENTRANCES ON NON-SIDEWALK SECTIONS

(1) Entrance angle should not be less than 45°.

Entrances with a high number of truck movements may be designed on an individual basis.

~ GRAVEL ENTRANCE ~ ~ PAVED ENTRANCE ~
(1) Entrance angle should not be less than 45°.

~ PAVED ENTRANCE ~

NOTES:

1. This type of entrance is suitable for other high traffic volume, public-type installations.
2. All island borders shall be curbed.

SHOPPING CENTER ENTRANCE ONTO highway - PAVED ShOULDERS 80/(05)

Provide 3^{\prime} min. paved apron on all projects.

Pave apron from gutter to back of sidewalk at gravel entrances.

Sidewalk or
Sidewalk and Esplanade

Terminal Curb (Typ.) Edge of Travel Lane | Non-Sidewalk | Sidewalk |
| :--- | :--- |

$$
\sim \text { GRAVEL ENTRANCE ~ }
$$

Highway \mathbb{E}

$$
\sim \text { PAVED ENTRANCE ~ }
$$

NOTES:
(1) Minimum curb opening is 20^{\prime} where the shoulder width is $\geq 6^{\prime}$ and 26' where the shoulder width is $<6^{\prime}$.

(1) Minimum entrance angle is 45° where the shoulder width $\geq 6^{\prime}$ and 60° where the shoulder width < 6^{\prime}.

If there are high truck turning volumes, the designer should consider providing turning radii of $15^{\prime}-25^{\prime}$ and/or a wider opening and/or limiting the angle of turn to accomodate trucks.

UNCURBED COMMERCIAL/INDUSTRIAL ENTRANCE ONTO CURBED HIGHWAY (WITH/WITHOUT SIDEWALK) 80/(07)

(1) Minimum entrance angle is 45° where the shoulder width $\geq 6^{\prime}$ and 60° where the shoulder width < 6^{\prime}.

CURBED COMMERCIAL/INDUSTRIAL ENTRANCE ONTO CURBED HIGHWAY WITH/WITHOUT SIDEWALK

(1) Where parking of Service Area abuts sidewalk, a curb, guardrail or fence should be provided.
(2) Island width will extend within I' of Right-of-Way line, if practical. When island width exceeds 10 , use design in figure 8-41 in Highway Design Guide.
(3) If there are high truck turning volumes, the designer should consider providing turning radii of 15'-25' and/or wider opening and/or limiting the angle of turn to accomodate trucks.
(4) If project requires a traffic movement permit then truncated domes will be required.

COMMERCIAL/INDUSTRIAL DOUBLE ENTRANCES ONTO CURBED HIGHWAY
 (NARROW RIGHT-OF-WAY)
 80/(09)

T.W. = Traveled Way Pavement \& Cross - slope
S. = Shoulder Povement \& Cross - slope

PAVEMENT TRANSITION AT BRIDGE

1. Maximums and minimums do not have tolerances and are not to be exceeded or unmet.
2. The standard turning space (level landing) is $4^{\prime}-0^{\prime \prime} \times 4^{\prime}$ - $0^{\prime \prime}$ sloping no more than 2.0\%. Where the turning space is constrained, the turning space shall be $4^{\prime}-0^{\prime \prime}$ minimum by $5^{\prime}-0^{\prime \prime}$ minimum. The $5^{\prime}-0^{\prime \prime}$ dimension shall be provided in the direction of the ramp run.
3. Detectable warnings shall be installed at all signed or signalized intersections. They shall have a truncated dome surface. The domes shall be in a square pattern and aligned with pedestrian traffic where possible.
4. Detectable warnings shall span the width of the pedestrian ramp. See Standard Detail 608(02).
5. All detectable warning fields placed at the same intersection shall be made up of the same uniform material type. Detectable warnings shall be contrasting in color to the adjacent walkway.
6. A ramp with a running slope less than 5.0% is defined as a "Blended Transition". Blended transitions do not require a level landing at the top of the ramp. See 80/(26) for details.
7. The ramp length shall not exceed 15 feet. Adjust ramp length or slope as needed to provide access to the maximum extent feasible. See 80ll(03) for details.
8. All curb ramp joints and grade breaks shall be flush.
9. Ramp grade breaks shall be perpendicular to the running slope.
10. There shall be a minimum of $12^{\prime \prime}$ Aggregate Subbase Course - Gravel under the sidewalk surface on pedestrian ramps.

Il. Drainage structures, traffic signal equipment, or other obstructions shall not be installed in the curb ramp or turning space areas.
12. Before retrofitting ramps, the contractor shall verify removal limits are sufficient to provide positive drainage, maintain existing drainage patterns, and avoid ponding in the final configuration.
13. A temporary pedestrian access route shall be provided whenever the existing pedestrian access route in the public right of way is blocked by construction, alteration, maintenance, or other temporary conditions. Refer to MUTCD for guidance.

CURB RAMP REQUIREMENTS		
Running Slope	A	Max. $8.33 \%(1: 12)$
Cross Slope	B	Max. 2\% (1:50) Ramp cross slope at street crossings without stop or signal control may match roadway profile.
Clear Width	C	Min. 5 feet Counter Slope
D	Max. 5\% (1:20)	

$$
\text { PEDESTRIAN } \underset{80(12)}{\text { RAMP }} \text { REQUIREMENTS }
$$

Choose roadway profile grade by rounding up for positive grades and down for negative grades. Round to the nearest whole integer. If constraints prevent placement of the ramp length required by the table, place the maximum length possible and check the slope. If above the maximum allowable slope, consider design modifications before considering technical infeasibility.

Note:

- This desirable design is the prefered option. Use other options only when required by design constraints.
PARALLEL PEDESTRIAN RAMP - OPTION I

- This desirable design is the prefered option. Use other options only when required by design constraints.
PERPENDICULAR PEDESTRIAN RAMP - OPTION I

PARALLEL PEDESTRIAN RAMP - OPTION $2 A$

Notes:

- This less desirable design should not be used unless required by design constraints. It may not provide adequate curb reveal. Use Option I when possible.
- No vehicular access shall be permitted through the radius curb.
- A minimum curb reveal of $3^{\prime \prime}$ is required at the apex of the curb radius.
- Minimum terminal curb length shall be Aft.

PERPENDICULAR PEDESTRIAN RAMP - OPTION RA

$$
80 /(17)
$$

Notes:

- This less desirable design should not be used unless required by design constraints. It may not provide adequate curb reveal. Use Option I when possible.
- No vehicular access shall be permitted through the radius curb.
- A minimum curb reveal of $3^{\prime \prime}$ is required at the apex of the curb radius.
- Minimum terminal curb length shall be 4ft.

PARALLEL PEDESTRIAN RAMP - OPTION 2B 80/(18)

- This less desirable design should not be used unless required by design constraints. It may not provide adequate curb reveal. Use Option I when possible.
- No vehicular access shall be permitted through the radius curb.
- A minimum curb reveal of $3^{\prime \prime}$ is required at the apex of the curb radius.
- Minimum terminal curb length shall be 4ft.

PERPENDICULAR PEDESTRIAN RAMP - OPTION 2B 80(19)

Notes:

- This less desirable design should not be used unless required by design constraints. It does not provide directional cues. Use Option I or Option 2 when possible.
- No vehicular access shall be permitted through the curb radius.

$$
\text { PARALLEL PEDESTRIAN RAMP - OPTION } 3
$$

~ ISOMETRIC VIEW ~
(not to scale)

Notes:

- This less desirable design should not be used unless required by design constraints. It does not provide directional cues. Use Option I or Option 2 when possible.
- No vehicular access shall be permitted through the curb radius.

PERPENDICULAR PEDESTRIAN RAMP - OPTION 3

~ PERSPECTIVE VIEW ~
(not to scale)

~ SECTION A-A ~

Note:

- No vehicular access shall be permitted through the curb radius.
- For use only when no sidewalk is present on the side road.
* Use this detectable placement if the distance from the grade break to the gutterline is less than or equal to 5 ft .
** Use this detectable placement if the distance from the grade break to the gutterline is greater than 5 ft .

$$
\text { SIDE STREET } \underset{80 ॥(22)}{P E D E S T R I A N ~ R A M P ~}
$$

PERPENDICULAR PEDESTRIAN RAMP - ESPLANADE 80/(24)

Note:

- Omit Detectable Warnings if the island crossing is less than 6'-0".

Note:
This option should only be used after all other options have been considered and deemed infeasible.

NOTES:

1. Width may vary depending on type of material chosen.
2. Follow Manufacturer's recommendations for anchoring blanket ends, overlaps, and staple spacing. Dimensions for these activities are to be used as a minimum.
3. Staples may be as provided or biodegradable staples according to the Qualified Products Listx.
4. See section 717.06I of the MaineDOT Standard Specification or MaineDOT Qualified Products List*.
*http:/ / www.maine.gov /mdot/transportation-research/qpl.php
5. Reference the most recent version of the MaineDOT Best Management Practices for Erosion and Sedimentation Control Manual.

$$
\begin{gathered}
\text { EROSION CONTROL BLANKET } \\
\text { SLOPE APPLICATION } \\
802(01)
\end{gathered}
$$

~ UNCOVERED CHANNEL SIDE SLOPES ~

Anchor according to detail

3' max. spacing between staples \square
 ~ COVERED CHANNEL SIDE SLOPES ~
NOTES:

1. Width may vary depending on design flows, channel side slopes, and type of material chosen.
2. Follow Manufacturer's recommendations for anchoring blanket ends, overlaps, and staple spacing. Dimensions shown for these activities are to be used as a minimum.
3. Staples may be as provided or biodegradable staples according to the Qualified Products Listx.
4. See Section 717.06/ of the MaineDOT Standard Specifications or MaineDOT Qualified Products List..
*http:/ / www.maine.gov/mdot/transportation-research/qpl.php
5. Reference the most recent version of the MaineDOT Best Management Practices for Erosion and Sedimentation Control Manual.

EROSION CONTROL BLANKET DITCH APPLICATIONS

The coupler can be any acceptable device used to tie the poles together

Section A

$$
\sim \text { TOP VIEW ~ }
$$

REF:
Best Management Practices for Erosion and Sedimentation Control Level Spreader

SILT FENCE
SEDIMENT BARRIER 802(04)

NOTES:

1. The dimensions shown are approximate and may be modified in the field by the Resident.
2. Riprap will be required on portions of the culvert end treatment of 2:\%

The remaining portion shall be loamed, seeded and hay mulched as directed.
3. Culverts installed on 2:l slopes shall have riprap laid on a 2:l slope around the inlet and outlet.

REF: Best Mngmt. Practices for Erosion and Sediment Control-Culvert Inlet I Outlet Protection.

REF: Best Management Practices for Erosion and Sediment Control -
Temporary Slope Drains

RIPRAP DOWNSPOUT 802(06)

REF: Best Mngmt. Practices for Erosion and Sedimentation Control -
Temporary Slope Drains

TEMPORARY SLOPE DRAINS 802(07)

~ SLOPE DRAIN INLETS ~

REF: Best Mngmt. Practices for Erosion and Sedimentation ControlTemporary Slope Drains

TEMPORARY SLOPE DRAIN INLETS 802(08)

~ SECTION ~

NOTES:

1. 'La' = Length of Apron. Distance 'La' shall be of sufficient length to dissipate energy
2. Apron shall be set to a zero grade and aligned parallel to water flow. 3. Filter material shall be filter fabric or 6"thick minimum graded gravel layer.
3. Reference: Best Management Practices for Erosion and Sediment Control -

Energy Dissipater Riprap Apron
5. This detail shall apply to pipe diameters of $36^{\prime \prime}$ or less.
6. Larger diameter pipes shall be designed by a professional engineer.
7. Reference: Riprap spec.703.29

ENERGY DISSIPATER - RIPRAP APRON

~ SECTION ~

NOTES:

1. Riprap shall be underlain by gravel bedding or non-woven geotextile.
2. REF: Best Management Practices for Erosion and Sediment Control-Energy Dissipater.
3. This detail shall apply to pipe diameters of $36^{\prime \prime}$ or less. Plunge pools for large diameter pipes shall be designed by a professional engineer.

ENERGY DISSIPATER - PLUNGE POOL

NOTE:
Unless specified, stone shall meet requirements of material specification 703.29 stone ditch protection.

~ PROFILE @ DITCH ~

REF: Best Management Practices for Erosion and Sedimentation Control Check Dam

STONE CHECK DAM 802(II)

Bury geotextile a depth of $6^{\prime \prime}$ min. below ground line

NOTE: Use Silt Fence inlet protection in sump locations only. Sheet flow less than lacre Drainage Area not in paved areas or with concentrated flows.

REF: Best Management Practices for Erosion and Sedimentation Control Storm Drain Inlet Protection

~ SECTION ~

NOTES:

1. Use Stone aggregate and non-woven geotextile inlet protection only in sump locations where heavy concentrated flows are expected.
2. Do not use where ponding around the structure might cause inconvenience or damage.
3. Stone aggregate shall be Stone For French Drain 703.24 or approved by the Resident.
4. Ref: Best management Practices for erosion and sedimentation controlStorm Drain Inlet Protection.

STONE AGGREGATE \& GEOTEXTILE CB/ INLET GRATE UNIT PROTECTION 802(13)

$$
\begin{aligned}
& \text { Spillway Riprap Outlet Structure } \\
& \qquad B^{\prime} \sim \operatorname{PLAN} \text { VIEW } \sim
\end{aligned}
$$

$$
\sim \text { SECTION B-B' } \sim
$$

REF:
Best Management Practices for Erosion and Sedimentation ControlSediment Traps

SEDIMENT TRAP

> Sandbags (Typ.)
> Channel Lining

Temporary

 Diversion Channel

~ SECTION A-A ~

NOTES:

1. Most non-woven geotextile is available in 12.5^{\prime} \& 15^{\prime} widths.

2. Overlap all temporary sediment basin geo-textile joints by I' minimum.
3. Design basin according to Best Management

Practices for Erosion and Sedimentation
Control - Temporary Sediment Basin.

Stone for French Drain (or Stone Ditch Protection) over length and width of structure
~ PROFILE ~

REF: Best Management Practices for Erosion and Sedimentation Control Stabilized Construction Entrance/Exit

$$
\text { CONSTRUCTION } \underset{802(17)}{E N T R A N C E / E X I T}
$$

~ RAILROAD SECTION ~
Not to Scole

PAVING DETAIL

ADDITIONAL PAVING NOTES

The Department will pay for the work specified in Subsection 40I.ll for the HMA used, except that cleaning objectionable material from the pavement and furnishing and applying Item 409.15 bituminous material to joints and contract surfaces is incidental.

A tack coat of emulsified asphalt, RS-I or HFMS-I, Item 409.15 shall be applied to any existing pavement at a rate of approximately $0.025 \mathrm{gal} / \mathrm{sq} . \mathrm{yd}$, and on milled pavement approximately $0.05 \mathrm{gal} / \mathrm{sq} . y d$, prior to placing a new course. All joints between existing and new pavement will be tacked.

Crossings shall be paved within 20 days following the completion of the crossing reconstruction.

Paved shoulders within the gage of the rail to point $24^{\prime \prime}$ outside of the field side of each rail shall be a standard 6" depth of pavement. Paved shoulders outside of this area shall be paved with 2 " surface mix only.

- The bituminous binder material for the mixture shall be viscosity grade AC-IO or 20 asphalt cement.
- The density requirements are waived.

$$
\begin{gathered}
\text { PAVING DETAIL } \\
\text { PAVING NOTES } \\
803(04)
\end{gathered}
$$

RAILROAD CROSSING GENERAL NOTES

1. The highway section over railroad crossings shall be designed with a minimum of 2-ll ft travelways and 6' shoulders. 4' shoulders may be designed if field conditions warrant.
2. Signals shall be located as per standard detail and shall comply with the latest edition of the Manual of Uniform Traffic Control Devices.
3. The standard crossing surface shall consist of a rubber railseal interface as manufactured by Polycorp or Performance Polymers, Inc, or approved equivalent. Alternative crossing surfaces may be installed with approval of MaineDOT.
4. New 136 \# prime welded rail shall be provided for crossing reconstruction. The minimum length of welded rail shall be II7' or extend 30' beyond each edge of pavement whichever is longer. The full depth excavation area shall extend 10^{\prime} beyond the welded rail and excavated to a minimum depth of 12 " below bottom of tie elevation.
$5.7^{\prime \prime} \times 9^{\prime \prime}$ ties ($8^{\prime \prime} 6^{\prime \prime}$ or 9^{\prime} long) shall be installed under the welded rail and shall be fully box anchored. Anchors may be omitted beneath the crossing surface in order to accommodate the installation of rubber railseal.
5. Geotextiles provided for rail crossings shall be the following minimum weights: 8 oz./s.y. for non-woven fabrics and 6 oz . /s.y. for woven fabrics. The minimum width through the crossing area shall be 17'. Geotextile fabrics shall be placed throughout the entire full depth construction area.
6. Construction signs and traffic control devices shall be erected and maintained during the construction of the project.
7. Field work performed between December 15 and March 15 shall be approved in advance by the MaineDOT Resident.
8. Erosion Control shall be installed and maintained as per approved Erosion Control Plan until all permanent measures are in place.

RAILROAD CROSSING GENERAL NOTES

Descrip.	Grad.	Item	Bit. Cont.	Total	No. of	Complementary
of Course	Design	No.	$\%$	of Mix	Thick.	Layers
Notes						

Railroad Planning
(6" Povement Depth)

Wearing	$1 / 2 " 1$	403.208	N/A	$1 / 2 " 1$	1	4.9 .17
Binder	$3 / 4^{\prime \prime}$	403.207	N/A	$4^{\prime \prime} / 2^{\prime \prime}$	2	4.9 .17
		\sim NOTES \sim				

1. The design traffic levelfor the mix placed shall be 0.3 to <3million ESALS
2.Section 106.6 Acceptance, (2) Method C-For hot mix asphalt designated as Method C in Special Provision Section 403 - Hot Mix Asphalt, one sample will be taken from the paver hopper or the truck body per 250 ton per pay item. The mix will be tested for gradation and PGAB content. Disputes will not be allowed. If the mix is within tolerances listed in Table 9. Method C the Department will pay the contract unit price.

Property	USL and LSL - Method C
Percent passing 3/16" [No. 4] and larger sieves	Target +/- 7
Percent possing 3/32" [No. 8] to 1.18 mm [No. 16] sieves	Target + /- 5
Percent passing 1/32" [no.30] sieve	Target + /- 4
Percent passing 1/64" [No. 50] to $0.003^{\prime \prime}$ [No. 200] sieve	Target + /- 3
PGAB Content	Target +/- 0.5

If the test results for each 250 ton increment are outside these limits the following deductions (Table 9b) shall apply to the HMA quantity represented by the test. A second consecutive failing test shall result in cessation of production.

$$
\text { ~ TABLE } 9 B \text { ~ }
$$

PGAB Content	-5%
No. $8-3 / 32^{\prime \prime}$ sieve	-2%
No. $50-1 / 64^{\prime \prime}$ sieve	-1%
No. $200-0.003^{\prime \prime}$ sieve	-2%

3. Compaction of the new Hot Mix Asphalt Pavement will be obtained using a minimal roller train consisting of a 3-5 ton vibratary roller. An approved release agent is required to ensure the mixture does not adhere to hand tools, rollers, pavers, and truck bodies. The use of petroleum based fuel oils will not be permitted.

RAILROAD CROSSING PAVING NOTES

Rail Superelevation

Same \% Grade as Rail
Superelevation
~ RAIL ROAD CROSSING GRADING ~

NOTE:
The slope of the 8^{\prime} shown, in no case, shall be above the plane of the rails either side of C/L per P.U.C. General Order \# 2.

RAIL ROAD CROSSING GRADING

Key:

- Flagger
- Channelizing devices

Channelizing devices separate work area from traveled way.

NOTE:

1. Flood lights should be provided to mark flagger stations at night as needed.
2. If entire work area is visible from one station, a single flagger may be used.
3. Warning lights should be used to mark channelizing devices at night as needed.
4. Channelizing devices are to be extended to a point where they are visible to approaching traffic.

TYPICAL APPLICATIONS OF TRAFFIC CONTROL

 DEVICES ON 2-LANE HIGHWAY. ONE LANE IS CLOSED AND FLAGGING IS PROVIDED.Use Highest
Posted Speed

20 mph
25 mph
30 mph
35 mph
40 mph
45 mph
50 mph
55 mph
60 mph

Minimum Distance (Feet)

225
325'
450'
550'
650^{\prime}
750^{\prime}
850'
950^{\prime}
$1 / 00^{\prime}$
~ SUGGESTED MIn. PAVEMENT MARKING PLACEMENT DISTANCE ~

NOTES:

1. When used, a portion of the pavement marking symbol shall be directly opposite the Advance Warning Sign (W IO-I). If needed, supplemental pavement marking symbol(s) may be placed between the Advance Warning Sign and the crossing, but should be at least 50' from the Stop Line.
2. A three lane roadway should be marked with a centerline for two-lane approach operation on the approach to a crossing. On multi-lane roads the transverse bands should extend across all approach lanes, and individual RXR symbols should be used in each approach lane.
3. Refer to Standard Alphabet for Highway and Markings for RXR symbols details.

TYPICAL SIGNAL LOCATION AND PAVING PLAN FOR SQUARE CROSSING

TYPICAL SIGNAL AND GUARD RAIL LOCATIONS FOR ACUTE ANGLE CROSSING 803(09)

TYPICAL SIGNAL AND CURB LOCATIONS FOR OBTUSE ANGLE $\begin{gathered}803(10) \\ \text { CROSSING }\end{gathered}$

TYPICAL FLASHING LIGHT SIGNAL - POST MOUNTED. TYPICAL SHOULDER WITHOUT CURB

16" Alternate reflectorized
Typical minimum clearance is 2^{\prime} from face of vertical curb to closest part of signal or gate arm in its upright position for a distance of 17^{\prime} above the crown of the roadway.

Where there is no curb, a minimum horizontal clearances of 2^{\prime} from edge of a paved or surfaced shoulder shall be provided with a minimum clearance of 6' from the edge of the traveled roadway where there is no curb or shoulder. the minimum horizontal clearance shall be 6' from the edge of the roadway.

Where gates are located in the median, additional widths may be required to provide the minimum clearance for the counterweight supports.

TYPICAL CLEARANCES FOR FLASHING LIGHT SIGNALS and automatic gates typical curb location

