GREEN LAKE WATER POWER CO.

UPDATED STUDY REPORT FOR THE GREEN LAKE HYDROELECTRIC PROJECT (FERC NO. 7189)

Prepared by:

Green Lake Water Power Co. 120 Hatchery Way, Ellsworth, ME 04605

Assisted by:

Pittsfield, Maine www.KleinschmidtGroup.com

February 2022

This page intentionally left blank.

GREEN LAKE HYDROELECTRIC PROJECT FERC NO. 7189 Updated Study Report

1.0 OVERVIEW

Green Lake Water Power Co. (GLWP) hereby files this Updated Study Report (USR) with the Federal Energy Regulatory Commission (FERC) as part of the relicensing of the Green Lake Project.

The Licensee is using FERC's Integrated Licensing Process (ILP) as established in regulations issued by FERC July 23, 2003 (Final Rule, Order No. 2002) and found at Title 18 CFR, Part 5. The current license expires on March 31, 2024.

1.1 Process and Schedule Overview

Consistent with requirements under 18 CFR § 5.15, and in accordance with the Green Lake Project Process Plan and Schedule, within 15 days following the filing of this Updated Study Report (USR) (i.e., by February 24, 2022) GLWP will hold an online meeting with relicensing participants and FERC staff to discuss the 2021 study results and status. Within 15 days following the USR meeting, GLWP will file a meeting summary.

FERC staff, or any relicensing participant, may file a disagreement concerning GLWP's meeting summary within 30 days of its issuance. This filing must set forth the basis of any disagreement with the material content of the meeting summary and propose any necessary alternative modifications to ongoing studies or new studies. GLWP will then have 30 days to respond to the disagreements and possibly propose revised study modifications or new studies. Within 30 days of the GLWP's response, any remaining disagreements will be resolved by FERC, and the study plan will be amended as appropriate.

In accordance with 18 CFR § 5.15(f), any proposal to modify an ongoing study must demonstrate that the study was not conducted as described in the approved Revised Study Plan, was conducted under anomalous environmental conditions, or that environmental conditions have changed in a material way since the Study Plan's approval. The proposal must also explain why the study's objectives cannot be met via the approved methods and why the proposal for modification was not made earlier, or that significant new information has become available that affects the study.

2.0 UPDATED STUDY REPORT

2.1.1 Downstream Benthic Macroinvertebrate (BMI) Study 1-4:

At the time when we did the Initial Study Report and ISR supplement BMI sites 2 and 3 data had not been analyzed. This work is now complete and the report is included below.

2020

Macroinvertebrate Sampling Study

Downstream

of

Green Lake Hydroelectric Project

Ellsworth Maine

FERC No. 7189

Submitted by:

Paul C. Leeper Moody Mountain Environmental 137 Diamond Str Searsmont Maine 04973

Submitted to:

Green Lake Water Power Company Ellsworth, Maine Date: 2-4-22

Introduction

This macroinvertebrate sampling study was conducted for Green Lake Water Power Company (GLWP) in support of the relicensing of the Green Lake Hydroelectric Project, Federal Energy Regulatory Commission (FERC) Project No. 7189. This report details the 2020 study efforts downstream of the Project as part of the Water Quality Certification Process. A previous report (Leeper 2021) reported on the macroinvertebrate sampling and analysis in Reeds Brook, downstream of the Green Lake Dam.

Study Objectives

The goal of the macroinvertebrate sampling study was to generate data on the aquatic macroinvertebrate community downstream of the GLWP powerhouse and assess this community in terms of Maine's Aquatic Life Standards using the Maine Department of Environmental Protection (MDEP) Linear Discriminant Model (LDM).

Study Area

In 2020 we placed samples at three (3) sites in Reeds Brook to study aquatic macroinvertebrates (Figure 1). The locations of the sites were recommended by the MDEP. Site 1 (see Leeper 2021) was located in Reeds Brook approximately 290ft downstream of the Green Lake dam. This site was located upstream of the Green Lake Hatchery filter overflow discharge into Reeds Brook. Sites 2 and 3 are reported on in this paper. Site 2 was located approximately 240 ft downstream of the powerhouse and approximately 2240 ft downstream of the dam. Site 3 was located approximately 400 downstream of the powerhouse at the confluence of Reeds Brook and the powerhouse tailrace, approximately 2350 ft downstream of the dam. Both of the sites are periodically backwatered by impounded water levels in Graham Lake. In addition, Site 3 is located downstream of the Green Lake National Fish Hatchery treatment plant discharge.

Figure 1. Location of aquatic macroinvertebrate sampling site downstream of the Green Lake Dam. Sites 2 and 3 are downstream of the powerhouse. Reeds Brook, August, September 2020.

Water Classification

Reeds Brook downstream of the Green Lake Dam is classified Class B ((38 M.R.S.A § 467(7)(A)(7)). With respect to designated uses, the Maine Water Quality Law requires that "Class B waters must be of such quality that they are suitable for the designated uses of drinking water supply after treatment; fishing; agriculture; recreation in and on the water; industrial process and cooling water supply; hydroelectric power generation, except as prohibited under Title 12, section 403; navigation; and as habitat for fish and other aquatic life. The habitat must be characterized as unimpaired" (38 M.R.S.A. § 465(3)(A)). The word "unimpaired" is defined to mean "without a diminished capacity to support aquatic life" (38 M.R.S.A. § 466(11)). In addition, for Class B waters, "Discharges to Class B waters may not cause adverse impact to aquatic life in that the receiving waters must be of sufficient quality to support all aquatic species indigenous to the receiving water without detrimental changes in the resident biological community" (38 M.R.S.A. § 465(3)(C). The term "resident biological community" is defined as "aquatic life expected to exist in a habitat which is free from the influence of the discharge of any pollutant" ((38 M.R.S.A. § 466(10)). The

term "without detrimental changes in the resident biological community" means no significant loss of species or excessive dominance by any species or group of species attributable to human activity" ((38 M.R.S.A. § 466(12)).

Study Methods

The objective of the macroinvertebrate sampling study was to determine if the aquatic life, in this case the macroinvertebrate community, attained these Class B standards. The Maine Department of Environmental Protection (DEP) "Methods for Biological Sampling and Analysis of Maine's Inland Waters" (Davies and Tsomides Revised 2014) were used as the basis of the field and laboratory procedures in the macroinvertebrate sampling study. A summary of these methods is given below.

The DEP standard rock bag samplers were used for this study. These samplers hold approximately 16 lbs. of clean, washed, bank-run cobble, graded to uniform diameter range of 1.5 to 3 inches. Three (3) samplers were placed at the sample sites; samplers were left in the river for approximately 28 days (\pm 4 days) to allow for invertebrate colonization. Retrieval of the samplers was done using an aquatic D-net. The net was placed directly downstream of a sampler; the sampler was then picked up and placed in the net. The contents of each sampler and the net were washed through a sieve bucket and preserved in labeled jars. Habitat measurements including substrate type, depth, and temperature were collected at sampler collection retrieval.

Samples were collected, preserved, and transported to the Moody Mountain Environmental laboratory. The three (3) samplers (replicates) were sorted, identified, and enumerated. The results were entered on MDEP Excel spreadsheets and sent to MDEP for modelling using the LDM.

Results

The samplers were placed in the river on August 27, 2020. Samplers were retrieved on September 24, 2020. Upon retrieval it was evident that samplers at Site 2 had washed downstream approximately 30 ft and had been disturbed. In addition, Site 2 had been backwatered by impounded water levels in Graham Lake from spring to shortly before the samplers were deployed.

Therefore, the community being sampled was impacted by water levels in Graham Lake and were in a lentic habitat rather than a lotic habitat in the months prior to sampling. Site 3 was also backwatered by impounded water levels in Graham Lake and was in a lentic habitat rather than a lotic habitat during the colonization period. Habitat measurements for Sites 2 and 3 are shown in Table 1 and Appendix 1. Photos of the areas around the sample sites and substrates are included below.

Table 1. Habitat measurements at Sites 2 and 3 in Reeds Brook downstream of GLWP powerhouse for aquaticmacroinvertebrate sampling. August, September 2020

Macroinvertebrate Field Data Sheet

Log Station Number 2	Directions		Type of Sampler RB Date Deployed 8/27/20
Waterbody Reeds I River Basin Union I Town Ellsworth	Brk. R. Lat-Long Coo N 44.624446	ordinates	Number Deployed 3 Date Retrieved 9/24/20 Number Retrieved 3
Stream Order 4	W 68.437384	0	Collector(s) P Leeper MME
1. <u>Land Use</u> (surrour Urban Cultivated Pasture X Upland hardwood	nding watershed) X Upland conifer Swamp hardwood Swamp conifer Marsh	2. <u>Terrain</u> ☐ Flat X Rolling ☐ Hilly ☐ Mountains	3. <u>Canopy Cover</u> □Dense (75-100% shaded) □Partly open (25-75% shaded) X Open (0-25% shaded) (% daily direct sun)

4.]	Physi	cal Characteristic	s of Bo	ttom estimate % over 12 m	n stretch	1			
[1	Bedrock	[70] Cobble (2.5" – 10")	U	Sand (<1/8")	[] (Clay
[10]	Boulders (>10")	[15] Gravel (1/8" – 2.5")	[Silt	I	5] I	Detritus

5. Habitat Characteristics	(immediate area)	Temp. Probe #	7. Water Samples
Time 1000h Wetted Width 5.8m Bank Fl Width	Time 1000h Wetted Width (m) 5.8m Bank Full Width	6. <u>Observations</u> Attached algae	□ Standard □ Other Lab Number
Velocity 18cm/s Diss. O ₂ (ppm) 9.3 Temp (C) 19.5 Turbidity DO Meter # <u>YSI Pro 1</u> Cal? Y /	Velocity 91 cm/s Diss. O ₂ (ppm) <u>9.3</u> Temp (C) 16.9 Turbidity DO Meter # <u>YSI Pro 1</u> _Cal? Y/	In Tailrace Samplers Disturbed Transported downstream by current	8. <u>Photograph</u> <u>Put-In Yes</u> <u>Take-Out Yes</u>

Macroinvertebrate Field Data Sheet

Log	Directions	Type of Sampler RB	
Station Number 3	70 72	Date Deployed 8/27/20	
Waterbody Reeds Brk.	15	Number Deployed 3	
River Basin Union R.	Lat-Long Coordinates	Date Retrieved 9/24/20	
Town Ellsworth	N 44.624516°	Number Retrieved 3	
Stream Order 4	W 68.436840°	Collector(s) P Leeper MME	

ding watershed)	2. Terrain	3. <u>Canopy Cover</u>	
X Upland conifer	🗖 Flat	Dense (75-100% shaded)	
□ Swamp hardwood	X Rolling	□Partly open (25-75% shaded)	
□ Swamp conifer	🗆 Hilly	X Open (0-25% shaded)	
□ Marsh	□ Mountains	(% daily direct sun)	
	X Upland conifer Swamp hardwood Swamp conifer Marsh	X Upland conifer Image: Second structure Swamp hardwood Image: Swamp conifer Swamp conifer Image: Hilly Marsh Image: Mountains	X Upland conifer Image: Flat Image: Control of the state in t

4.]	Phys	ical Characteristic	cs of Bo	ottom estimate % over 12	m stretch			
1	1	Bedrock	1] Cobble (2.5" – 10")	[90] Sand (<1/8")	[1	Clay
1	1	Boulders (>10")]] Gravel (1/8" – 2.5")	[10] Silt	Ĩ	1	Detritus

5. Habitat Characteristics	(immediate area)	Temp. Probe #	7. Water Samples		
Time 1045h Wetted Width 21m Bank Fl Width Depth 70cm Velocity 16cm/s Diss. O ₂ (ppm) 9.5 Temp (C) 17.8 Turbidity DO Meter # <u>YSI Pro 1</u> Cal? Y /	Time 1010h Wetted Width (m) Bank Full Width Depth 43cm Velocity 49 cm/s Diss. O ₂ (ppm) <u>9.3</u> Temp (C) 16.9 Turbidity DO Meter # <u>YSI Pro 1</u> _Cal? Y /	6. <u>Observations</u> Confluence of brook and tailrace Downstream of hatchery discharge	☐ Standard ☐ Other Lab Number 8. <u>Photograph</u> <u>Put-In Yes</u> <u>Take-Out No</u>		

Photo 1. View west-northwest, upstream from Site 2 looking at powerhouse tailrace. 8/27/20 PCL

Photo 2. View east from Site 2. Note GLNFH treatment plant discharge at center right of picture. 8/27/20 PCL

Photo 3. Typical substrate and deployed samplers at Site 2. 8/27/20 PCL

Photo 4. Typical substrate Site 2. 8/27/20 PCL

LDM Results

The LDM biocriteria preliminary results are shown in Table 2 and Appendix 1. To attain a particular class a site must have a 60% or greater score in the test for that class. DEP finds that the communities at Sites 2 and 3 were not in attainment of Aquatic Life Class B Standards. The final determinations are not shown on these reports but are as follows (MDEP email dated 1/26/22 Jeanne DiFranco to Paul Leeper):

Station 1198 (Reeds Brook 2): The model result was NA (non-attainment of any class), but the finding was raised to Class C based on Best Professional Judgement considering the community present and potential habitat issues related to periodic inundation from Graham Lake backwatering.

Station 1199 (Reeds Brook 3): The model result was NA and indeterminant for Class C (in BPJ range). The finding was raised to Class C based on BPJ for similar reasons as above.

The make-up of this community and a discussion of the results are presented below.

Table 2. Results of the DEP linear discriminant model (LDM) for 2 sites downstream of the GLWP powerhou	se
in Ellsworth Maine in 2020. A score of 60% or greater is needed to attain a particular class.	

Site	Probability of Class A	Probability of Class B	Probability of Class C	Probability of Non- Attainment		
2 1%		0%	0%	100%		
3	1%	0%	52%	48%		

Community Analysis

The macroinvertebrate communities sampled downstream of the GLWP powerhouse were abundant and relatively rich in taxa (Table 3 and Appendix 1). The community at Site 2 was populated with 26 different taxa with a Mean Total Abundance of 350. The Site 3 community was less numerous (Total Abundance of 232) but more rich with 30 taxa. The Site 2 community was dominated by filter-feeding caddisflies, representing over 52% of Total Abundance. The Site 3 community was dominated by the Amphipod *Hyalella* and the midge *Cricotopus*, representing over 57% of the community. The Diversity values were moderate at 2.78 (Site 2) and 3.16 (Site 3). Structural indices for the sampled community are shown in Tables 3 and 4.

 Table 3. Indices of community structure for the aquatic invertebrate communities downstream of the GLWP powerhouse. August, September 2020.

Site	Tot. Abund.	Taxa Richness	S-W Div.	Hils. Biotic Index (HBN)	Water Quality indication	Mayfly, Stonefly, Caddisfly (EPT) Richness	Mayfly, Stonefly	y (EP)	Mic	lge
				(IIBI ()	trom HBN		Rich	% Ab	Rich	% Ab
2	350	26	2.78	5.29	Good	12	4	2%	3	3%
3	232	30	3.16	6.79	Fairly Poor	10	6	7%	7	24%

Indexes measuring the community tolerance to poor riverine water quality conditions at Site 2 were mixed. The community was dominated by net-spinning caddisflies (*Hydropsyche* and *Cheumatopsyche*), generally considered to be "clean water organisms" that are generally sensitive to poor water quality. The Hilsenhoff Biotic Index (HBI) value, 5.29, indicated good water quality (Hilsenhoff 1987). However, the EP index of sensitive mayflies and stoneflies had 4 taxa representing just 2% of the community and no sensitive stoneflies were found in the samples.

The Site 3 community indices indicated a more stressed riverine community. Dominant organisms (representing over 5% of the Total Abundance) in the community are shown in Table 4 arranged from the most sensitive organisms to the organisms most tolerant of poor water quality conditions. The community had four (4) organisms that made up 75% of the total abundance that, when found in stream habitats, are tolerant of poor riverine water quality. The HBI value of 6.8 indicated fairly poor water quality (Hilsenhoff 1987). The EP index of sensitive mayflies and stoneflies had 6 taxa representing just 7% of the community and no sensitive stoneflies were found in the samples. Finally, midge larvae (Chironomidae), organisms generally more tolerant of poor riverine water quality, made up 24% of the total abundance.

	Sit	e 2	Site 3		
Sensitivity to Poor Water Quality	Dominant Organism	% of Community	Dominant Organism	% of Community	
Sensitive	Hydropsyche	28%			
Intermediate	Cheumatopsyche	24%	Polycentropus	5%	
	Hyalella	23%	Hyalella	36%	
Tolerant	Isopoda	8%	Cricotopus	21%	
	Hydrobiidae	5%	Isopoda	9%	
			Planariidae	9%	

Table 4. Dominant aquatic invertebrate organisms downstream of the GLWP powerhouse. July, August 2020.

Summary

- 1. The objective of the macroinvertebrate sampling study was to generate data on the aquatic macroinvertebrate community in downstream of the GLWP powerhouse and assess this community in terms of Maine's Aquatic Life Standards. Reeds Brook downstream of the powerhouse is classified Class B.
- 2. The Maine Department of Environmental Protection (DEP) "Methods for Biological Sampling and Analysis of Maine's Inland Waters" (Davies and Tsomides Revised 2014) were used as the basis of the field and laboratory procedures in this study.
- 3. Samplers were placed at 2 sites on August 27. Retrieval was on September 24. Site 2 had been backwatered by impounded water levels in Graham Lake from spring to shortly before the samplers were deployed. Therefore, the community being sampled was impacted by water levels in Graham Lake and were in a lentic habitat rather than a lotic habitat in the months prior to sampling. Site 3 was also backwatered by impounded water levels in Graham Lake and was in a lentic habitat rather than a lotic habitat during the colonization period. Site 3 is also located downstream of the Green Lake National Fish Hatchery treatment plant discharge. At retrieval it was found that samplers at sites 2 had been disturbed by high flows and washed downstream approximately 30 ft.
- 4. The DEP finds that the LDM biocriteria results indicate that the community is not in attainment of Class B Aquatic Life Standards rather, the communities attain Class C

Aquatic Life Standards.

5. The invertebrate communities sampled downstream of the GLWP powerhouse were abundant and relatively rich in taxa. Indexes measuring the community tolerance to poor riverine water quality conditions at Site 2 were mixed. The Site 3 community indices indicated a more stressed riverine community.

References

- Davies, S.P. and L. Tsomides. Revised 2014. Methods for biological sampling and analysis of Maine's rivers and streams. ME Dept. of Env. Prot. Augusta, ME. 31p.
- Hilsenhoff, W.L. 1987. An improved biotic index of organic stream pollution. The Great Lake Entomologist. Pgs. 31-39.
- Leeper, Paul C. 2021. 2020 Macroinvertebrate Sampling Study Downstream of Green Lake Dam, Ellsworth Maine, FERC No. 7189. Report to Green Lake Water Power Company, March 15, 2021. 13p.

Appendix 1- LDM results and data files including field data, and individual replicate data.

A DECEMBER OF	Maine Department of Environmental Protection Biological Monitoring Program				
STATE OF WRON		Aqu	atic Life	assification Attainment Report	
				tation Information	
Station Number:	S-1198			River Basin:	
Waterbody:	Reeds H	Brook - Station	1198	HUC8 Name:	
Town:	Ellswor	rth		Latitude:	
Directions:	GREEN	LAKE HATCH	ERY, DRIV	JP ROAD TO Longitude:	
	POWER Power	RHOUSE, SITE I RHOUSE OUTLI	IS JUST DO ET. REEDS	NSTREAM OF Stream Order: ROOK 2.	
				ample Information	
Log Number:	2927	Type of	of Sample:	OCK BAG Date Deployed: 8/27/2020	
Subsample Factor	: X1	Replic	ates:	Date Retrieved: 9/24/2020	
Sussample Factor			C	sification Attainment	
Statutory Class:		В	Final De	rmination: Date:	
Model Result with	h P>0.6:	NA	Reason f	Determination:	
Date Last Calcula	ted:	1/7/2022	Commen	Deter mination.	
Date Last Carcula	itu.	1/7/2022	commen		
	P 6	N. 11		Todel Probabilities	
C1 1	First 2	stage Model	0.24	C or Better Model	
Class A	0.00	Class C	0.54	Class A, B, or C 0.00	
Class D	0.00	INA Na lal	0.05	Non-Attainment 1.00	
C1 •	Born	setter Model	0.00	<u>A Model</u>	
Class A o	rB		0.00	Class A 0.01	
Class C o	r Non-At	ttainment	1.00	Class B or C or Non-Attainment 0.99	
01 T-+-1 M A1		28	250.00	Model variables	
01 Total Mean Al	bundance	3	350.00	18 Relative Abundance Ephemeroptera 0.02	
02 Generic Richn	ess	dama an	26.00	19 EPT Generic Richness 12.00	
03 Piecoptera Me	an Abun	dance	0.00	21 Sum 01 Abundances: Dicrotenaipes, 0.00 Micropsectra, Parachironomus, Helohdella	
04 Ephemeropter	a Mean F	i Di initia	5.5.	23 Relative Generic Richness- Plecontera 0.00	
05 Shannon-wier	der Gener	ric Diversity	2.70	25 Sum of Abundances: <i>Chaumatonsycha</i> 93.67	
06 Hilsennon Bic	denage ((Thiron and do a	5.2	Cricotopus, Tanvtarsus, Ablabesmvia	
07 Relative Adun	dance - C	Dintonomidae	0.0.	26 Sum of Abundances: Acronewia 0.00	
00 II. down and a	hundar	less Diptera	07.2	Maccaffertium. Stenonema	
11 Characteria	Abundana	Janaa	97.5.	28 EP Generic Richness/14 0 29	
12 EPT Congris	he Abun	Distara	85.00	30 Presence of Class A Indicator Taxa/7 0.14	
Generic Richn	acc	Diptera	2.40	Five Most Dominant Taxa	
13 Relative Ahun	dance - (Oligochaeta	0.0	Paule Tavan Nama	
15 Perlidae Mean	Abunda	nce (Family	0.0	1 Hydronsyche 27.81	
Functional Gro	oup)	2		2 Cheumatopsyche 24.29	
16 Tanypodinae M	Mean Ab	undance	0.0	3 Hvalella 23.05	
(Family Funct	ional Gro	oup)		4 Isopoda 7.52	
17 Chironomini Abundance (Family Functional Group)			1.0	5 Hydrobiidae 4.57	

Report Printed: 1/7/2022

Contact: biome@maine.gov or (207)287-7688

	Mai	ne Department of Biological Mo	'Environmental Pro onitoring Program	otection				
S JATE OF MANY	Aq	atic Life Classifi	cation Attainment	Report				
Station Number: S-1	1198 Town:	Ellsworth	Date	Date Deployed: 8/27/2026				
Log Number: 292	27 Waterbo	dy: Reeds Brook - S	Station 1198	Date	Date Retrieved: 9/24/2020			
	S	ample Collection ar	nd Processing Inform	ation				
Sampling Organizatio	n: MOODY MOU ENVIRONMEN	NTAIN TA	Taxonomist: PAUI ENV	LEEPER (MOO RONMENTAL)	DY	MOUNTAIN		
Waterbody	Information - Dep	loyment	Waterbody Information - Retrieval					
Temperature:	19.5	deg C	Temperature:	1	16.9	deg C		
Dissolved Oxygen:	9.3	Dissolved Oxygen:		9.3	mg/l			
Dissolved Oxygen Sa	aturation:		Dissolved Oxygen	Saturation:				
Specific Conductance	e:		Specific Conductance:					
Velocity:	18	cm/s	Velocity:		91	cm/s		
pH:			pH:					
Wetted Width:	5.8	m	Wetted Width:		6	m		
Bankfull Width:			Bankfull Width:					
Depth:	23	cm	Depth:		43	cm		
		Water	r Chemistry					
		Summary of Ha	abitat Characteristics	8				
Landuse Name	<u>Ca</u>	nopy Cover	Terra	in				
Upland Conifer	OI	en	Rolling					
Upland Hardwood								
Potential Stressor	Lo	cation	Substrate					
Impounded	At	ove Confluence	Bould	ler		10 %		
Regulated Flows	Be	Below Dam		us		5 %		
			Grave	:1		15 %		
Rubble/Cobble		le/Cobble		70 %				
		Landcover Su	mmary - 2004 Data					
		Samul	Commante					

IN TAILRACE PER DEP,ATTACHED ALGAE & MOSS NO BANKFUL MEASUREMENT BECAUSE INUNDATED BY GRAHAM LAKE AT NHW

Report Printed: 1/7/2022

Contact: biome@maine.gov or (207)287-7688

Maine Department of Environmental Protection Biological Monitoring Program Aquatic Life Taxonomic Inventory Report

Station Number: S-1198	Waterbody: Reeds Brook -	Town: Ellsworth					
Log Number: 2927	Subsample Factor: X1	Replicates: 3		Calcu	ilated: 1/7/20	22	
	Maine Taxonomic	Count (Mean of Samplers)		Hilsenhof Biotic	Functional Feeding	Relative Abundance %	
Taxon	Code	Actual	Adjusted	Index	Group	Actual	Adjusted
Planariidae	03010101	8.00	8.00			2.3	2.3
Hirudinidae	08030201	0.67	0.67		-	0.2	0.2
Isopoda	090101	26.33	26.33			7.5	7.5
Hyalella	09010203006	80.67	80.67	8	CG	23.0	23.0
Orconectes	09010301008		0.33		CG		0.1
Orconectes limosus	09010301008013	0.33				0.1	
Boyeria	09020301004	0.33	0.33	2	PR	0.1	0.1
Baetidae	09020401	1.67	1.67			0.5	0.5
Stenacron	09020402014	0.33	0.33	7	SC	0.1	0.1
Leptophlebiidae	09020406	1.67	1.67			0.5	0.5
Eurylophella	09020410036	1.67	1.67	3	CG	0.5	0.5
Chimarra	09020601003	6.33	6.33	2	CF	1.8	1.8
Polycentropus	09020603010	0.67	0.67	6	PR	0.2	0.2
Cheumatopsyche	09020604015	85.00	85.00	5	CF	24.3	24.3
Hydropsyche	09020604016	97.33	97.33	4	CF	27.8	27.8
Macrostemum	09020604018	0.33	0.33	3	CF	0.1	0.1
Ochrotrichia	09020607027	0.67	0.67	4	Р	0.2	0.2
Lepidostoma	09020611064	0.33	0.33	1	SH	0.1	0.1
Oecetis	09020618078	0.33	0.33	8	PR	0.1	0.1
Cricotopus	09021011037	8.33	8.33	7	SH	2.4	2.4
Tanytarsus	09021011076	0.33	0.33	6	CF	0.1	0.1
Pseudochironomus	09021011078	1.00	1.00	5	CG	0.3	0.3
Cnephia	09021012046	10.33	10.33	0	CF	3.0	3.0
Atherix	09021015055	0.33	0.33	2	PR	0.1	0.1
Hydrobiidae	10010104	16.00	16.00			4.6	4.6
Physidae	10010202	0.33	0.33		SC	0.1	0.1
Bivalvia	1002	0.67	0.67		CF	0.2	0.2

Report Printed: 1/7/2022

Contact: biome@maine.gov or (207)287-7688

Maine Department of Environmental Protection Biological Monitoring Program

Aquatic Life Classification Attainment Report

			Statio	n Informati	on				
Station Number: S-1199					River Basin:				
Waterbody:	Reeds I	Brook - Station	1199		HUC8 Name:				
Town:	Ellswor	rth			Latitude:				
Directions: GREEN LAKE HATCH POWERHOUSE, SITE POWERHOUSE DISCH			ERY, DRIVE UP ROAD TO		Longitude:	Longitude:			
			S JUST DOWNSTR ARGE. REEDS BR	EAM OF COOK 3.	Stream Order:				
			Sampl	e Informati	on				
Log Number:	: 2928 Type of Sample: ROCK BAG Date D				ate Deployed:	8/27/2020			
Subsample Factor	: X1	Replic	ates: 3		D	: 9/24/2020			
			Classific	ation Attain	ment				
Statutory Class:		В	Final Determination:		Date:	Date:			
Model Result with	ı P≥0.6:	NA	Reason for Dete	ermination:					
Date Last Calcula	ted:	1/7/2022	Comments:						
			Mode	l Probabiliti	ies				
	First S	Stage Model			C or Better Model				
Class A	0.00	Class C	0.75	(Class A, B, or C	0.52			
Class B	0.00	NA	0.24	1	Non-Attainment	0.48			
	B or H	Better Model			A Model				
Class A or B			0.00	Class A 0.01					
Class C or Non-Attainment			1.00	Class B or C or Non-Attainment 0.99					
			Mod	lel Variable	S				
01 Total Mean Al	oundance	e	231.67	18 Relat	tive Abundance Ephemero	optera	0.07		
02 Generic Richn	ess		30.00	19 EPT Generic Richness 10					
03 Plecoptera Me	an Abun	dance	0.00	21 Sum of Abundances: Dicrotendipes, 1					
04 Ephemeroptera	a Mean A	Abundance	17.00	Micropsectra, Parachironomus, Helobdella					
05 Shannon-Wien	er Gene	ric Diversity	3.16	23 Relative Generic Richness- Plecoptera					
06 Hilsenhoff Bio	tic Inde	ĸ	6.79	25 Sum of Abundances: Cheumatopsyche, 54					
07 Relative Abun	dance - (Chironomidae	0.24	Cricolopus, Tanylarsus, Ablabesmyla					
08 Relative Gener	ric Richr	ness Diptera	0.30	26 Sum of Abundances: Acroneuria, 2. Massaffartium, Stanonoma					
09 Hydropsyche A	bundan	ce	1.33	20 ED Compile Di Anno 114					
11 Cheumatopsyche Abundance			6.67	20 Brosenee of Class A Indicator Taxa/7					
12 EPT Generic Richness/ Diptera		1.11	Five Meet Dominant Terre		0.14				
13 Relative Ahun	css dance - (Oligochaeta	0.00	D 1	T N	nant raxa			
15 Perlidae Mean Abundance (Family			0.00	Rank	l axon Name	Perc	ent		
Functional Gro	oup)		0.00	2	Criaotomus	30	1.59		
16 Tanypodinae M	Aean Ab	undance	1.33	2	Isonoda	20	1.30		
(Family Functi	ional Gro	oup)	100.000.000	3	4 Planariidaa 9.2				
17 Chironomini A	bundan	ce (Family	1.33	4	Polycentronus	c A	60		
Functional Gro	oup)	91 - 56 Mill - 58	1201000	5	1 orycentropus		.00		

Report Printed: 1/7/2022

Contact: biome@maine.gov or (207)287-7688

Contraction of the second seco	Maine Department o Biological M	of Environmental Protectio Ionitoring Program	DN			
STATE OF WORK	Aquatic Life Classi	fication Attainment Repor	t			
Station Number: S-1 Log Number: 292	199 Town: Ellsworth18 Waterbody: Reeds Brook -	Station 1199	Date Deployed: 8/27/2020 Date Retrieved: 9/24/2020			
	Sample Collection a	and Processing Information				
Sampling Organization	n: MOODY MOUNTAIN ENVIRONMENTAL	Taxonomist: PAUL LEEPER (MOODY MOUNTAIN ENVIRONMENTAL)				
Waterbody	Information - Deployment	Waterbody Inf	formation - Retrieval			
Temperature:	17.8 deg C	16.9 deg C				
Dissolved Oxygen:	9.5 mg/l	Dissolved Oxygen:	9.3 mg/l			
Dissolved Oxygen Sa	turation:	Dissolved Oxygen Satura	ition:			
Specific Conductance	5°	Specific Conductance:				
Velocity:	16 cm/s	Velocity:	52 cm/s			
pH:		pH:				
Wetted Width:	21.3 m	Wetted Width:				
Bankfull Width:		Bankfull Width:				
Depth:	70 cm	Depth:	43 cm			
	Wate	er Chemistry				
	Summary of H	labitat Characteristics				
Landuse Name	Canopy Cover	Terrain				
Upland Conifer	Open	Rolling				
Upland Hardwood		12.15				
Potential Stressor	Location	Substrate				
impounded	Above Confluence	Sand	90 %			
Regulated Flows	Below Dam	Silt	10 %			
	Landcover S	ummary - 2004 Data				
	Samn	le Comments				

BELOW CONFLUENCE WITH BYPASS NO BANKFUL MEASUREMENT BECAUSE INUNDATED BY GRAHAM LAKE AT NHW

Maine Department of Environmental Protection Biological Monitoring Program

Aquatic Life Taxonomic Inventory Report

Station Number: S-1	199	Waterbody: Reeds Brook - S	Town: Ellsworth					
Log Number: 292	8	Subsample Factor: X1	Replicates: 3 Count (Mean of Samplers)		Calcu	lated: 1/7/202	22	
		Maine Taxonomic			Hilsenhoff Function Biotic Feeding		al Relative g Abundance %	
Taxon		Code	Actual	Adjusted	Index	Group	Actual	Adjusted
Planariidae		03010101	20.00	20.00		522	8.6	8.6
Annelida		08	1.33	1.33			0.6	0.6
Hirudinidae		08030201	0.67	0.67		100	0.3	0.3
Isopoda		090101	21.33	21.33			9.2	9.2
Hyalella		09010203006	82.33	82.33	8	CG	35.5	35.5
Orconectes		09010301008		1.33		CG		0.6
Orconectes limosus		09010301008013	1.33			222	0.6	
Boyeria		09020301004	3.33	3.33	2	PR	1.4	1.4
Hagenius		09020302008	0.33	0.33	1	PR	0.1	0.1
Baetidae		09020401	1.00	1.00			0.4	0.4
Stenacron		09020402014	5.00	5.00	7	SC	2.2	2.2
Stenonema		09020402016	2.00	2.00	4	SC	0.9	0.9
Paraleptophlebia		09020406026	5.67	5.67	1	CG	2.4	2.4
Eurylophella		09020410036	3.00	3.00	3	CG	1.3	1.3
Caenis		09020412040	0.33	0.33	7	CG	0.1	0.1
Polycentropus		09020603010	10.67	10.67	6	PR	4.6	4.6
Cheumatopsyche		09020604015	6.67	6.67	5	CF	2.9	2.9
Hydropsyche		09020604016	1.33	1.33	4	CF	0.6	0.6
Ochrotrichia		09020607027	0.67	0.67	4	Р	0.3	0.3
Nigronia		09020701003	1.00	1.00	0	PR	0.4	0.4
Tipulidae		09021001	0.33	0.33			0.1	0.1
Natarsia		09021011011	1.00	1.00	8	PR	0.4	0.4
Thienemannimyia		09021011020	0.33	0.33	3	PR	0.1	0.1
Cricotopus		09021011037	47.67	47.67	7	SH	20.6	20.6
Nanocladius		09021011049	2.67	2.67	3	CG	1.2	1.2
Psectrocladius		09021011056	1.67	1.67	8	CG	0.7	0.7
Dicrotendipes		09021011085	1.00	1.00	8	CG	0.4	0.4
Polypedilum		09021011102	0.33	0.33	6	SH	0.1	0.1
Cnephia		09021012046	0.33	0.33	0	CF	0.1	0.1
Psephenus		09021108058	0.33	0.33	4	SC	0.1	0.1
Hydrobiidae		10010104	7.67	7.67		200	3.3	3.3
Bivalvia		1002	0.33	0.33		CF	0.1	0.1

Report Printed: 1/7/2022

Contact: biome@maine.gov or (207)287-7688