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Summary 

 

 A proactive approach to understanding potential impacts of climatic forcing on American 

lobster (Homarus americanus) in a ever changing Gulf of Maine is imperative in planning for an 

uncertain future. Forecasting the species’ habitat availability, its utilization, and changes in the 

species abundance under different climatic scenarios and using the information in the lobster 

stock assessment are a critical step towards an ecosystem-based fisheries management. This 

research aims to develop and apply various modeling tools to evaluate spatio-temporal dynamics 

of lobster stock and better understand potential changes in the Gulf of Maine lobster fishery. We 

developed and applied an ensemble species distribution model to project lobster distribution and 

evaluate uncertainty associated with the projection.  We quantified the environmental-lobster 

relationship and incorporated the environmental variables in lobster stock assessment.  We  

evaluated assumptions associated with lobster-environmental models and identified possible 

consequences of violating these assumptions when projecting habitat suitability.   

 The Gulf of Maine is a highly complex environment and previous studies have suggested 

needs to account for spatial nonstationarity in species distribution models for the American 

lobster. To explore impacts of spatial nonstationarity on species distribution, we developed 

species distribution and bioclimate envelope (habitat suitability) models with the following three 

assumptions informed by the GOM coastal currents: (1) stationary relationships between lobster 

density and environmental variables; (2) nonstationary density-environment relationships 

between eastern and western GOM, and (3) nonstationary density-environment relationships 

across eastern, central, and western GOM.  We forecasted distributions for the period 2028-2055 

using each of these models under the Representative Concentration Pathway (RPC) 8.5 “business 

as usual” climate warming scenario. We found that the model with the finest scale performed 

best. This suggests that accounting for spatial nonstationarity in the GOM leads to improved 

distribution estimates. Forecasted distributions revealed that stationary models tended to 

comparatively overestimate most season 𝗑 sex 𝗑 size group lobster abundances in western GOM, 

underestimate in the western portion of central GOM, and overestimate in the eastern portion of 

central GOM, with slightly less consistent and patchy trends amongst groups in eastern GOM. 

We demonstrate how estimates of season-, sex-, and size- specific American lobster spatial 

distribution would vary based on the spatial scale assumption of nonstationarity in the GOM. 

This study supports the existence of spatially non-stationary lobster-environmental relationships, 

which highlights the importance of spatial scales in modeling lobster habitat suitability and 

abundance distributions.  

 This project provides a suite of modeling framework to project lobster spatial 

distributions and population dynamics and improves our understanding of how lobster 

population may respond to climate changes. 
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Project Introduction 

 

American lobster, a benthic crustacean distributed along the coast of northeastern United 

States, is a major fishery resource throughout the species’ range (Atlantic States Marine Fisheries 

Commission (ASMFC) 2015), worth over $669 million in 2016 (ACCSP, 2017). Lobster 

landings accounted for 81% of all commercial fish landings in the State of Maine in 2015 

(ACCSP, 2017). There are an estimated 5,000 license holders, accounting for approximately 

55% of all commercial fishing licenses held in the state (State of Maine Department of Marine 

Resources (Maine DMR) 2016). Such dependence on the lobster fishery leaves the coupled 

natural and human system vulnerable to environmental and regulatory changes.  

Studies suggest that the population dynamics of American lobster experience strong top-

down (e.g., fishing pressure) and bottom-up (e.g., climate and resources) controls (ASMFC 

2015; Boudreau et al. 2015; Caputi et al. 2013). For sustainable management of this species, it is 

critical to (1) evaluate the relative importance and synergistic impacts of these environmental 

drivers, (2) maximizing the efficiency and accuracy of the existing stock monitoring and 

assessment program, and (3) develop the capacity for predicting changes in ecology, 

biogeography and phenology of American lobster which potentially can limit the lobstering 

grounds in future.  

Climate-driven changes in the GoM ecosystem structure have been identified as a likely 

primary stressor to the specie’s commercial fisheries within its whole geographic distribution 

(Dove et al. 2005; Caputi et al. 2013; Mills et al. 2013). American lobster is an ectothermic 

species and tracks its climatic niches in space (distribution shifts) or time (phenological shifts). 

Changes in temperatures are likely to cause shifts in the lobster distribution, behavioral changes 

such as early and more frequent molting, and increased seasonal migrations (Fogarty et al. 2007; 

Pinsky et al. 2013). Temperature has also been shown to influence the regulation of hormones, 

specifically those that control the molting cycle (Qadri et al. 2007). Record warm temperatures in 

the GoM during 2012 coincided with an unusually early spring molt and high landings of newly 

recruited lobsters to the fishery as a result, which contributed to a decline in total value of the 

GoM lobster fishery (Mills et al. 2013). The water temperature in the GoM has increased over 

the last 40 years (Nye et al. 2009; ASMFC 2015). Sea surface temperature in GoM shows an 

increase of 0.03 °C per year, resulting in a 1 °C increase in the mean temperature since 1982 

(Mills et al. 2013). Under the latest Intergovernmental Panel on Climate Change (IPCC) 

Representative Concentration Pathways (RCP) 8.5 emissions scenario, average bottom 

temperature in Northeast U.S. Continental Shelf system is expected to increase more than 1 °C 

by 2050 (IPCC 2013; NOAA 2015). As the rate of climate change is predicted to accelerate in 

the future, there is a growing need to understand the dynamic interactions between climate 

change and biogeography, phenology and population dynamics of American lobster through the 

development of predictive and analytical modeling frameworks (Hare et al. 2012; Shackell et al. 

2014).  

Top-down forces such as predators may also affect the distribution of American lobster in 

the GoM (Boudreau et al. 2015). The importance of predators had been identified through 

laboratory experiments (Wahle 1992; Wahle and Steneck 1992) and temporal scale assessments 

(Boudreau et al. 2015). The widespread decrease of groundfish may contribute to the historically 

high levels of lobsters in the GoM (Steneck and Wahle 2013). It is necessary to incorporate 
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predator information into spatial distribution models in order to understand the effects of top-

down forces on lobster distribution at a fine spatial scale.  

Relevant modeling framework for American lobster has been accomplished in the Chen 

Lab with funding from NSF, Maine Sea Grant, and University of Maine. The modeling 

framework consists of three components: 1) size, season, and stage specific Habitat Suitability 

Index (HSI) to quantify the spatiotemporal variability of bioclimate envelope (i.e. lobster habitat 

quality and boundaries defined by physical and climatic variables), 2) Tweedie generalized 

additive models (Tweedie GAM) to quantify the spatiotemporal size, season, and stage specific 

lobster abundance distribution forced by meso-scale climatic variations, and 3) geographically 

weighted regression model to quantify the spatially varied strength of abiotic environmental 

effects on the presence and density of lobsters. The HSI is a numerical index that describes the 

capacity of a given habitat to support a given species, and is based on suitability indices (SI) that 

can quantify the optimal environmental conditions from 0 (least suitable habitat) to 1 (most 

suitable habitat). The use of HSI will allow us to evaluate suitability of habitat considering key 

environmental variables (e.g., bottom temperature) for the GoM lobster stock at different life 

history stages (Franklin 2010;  Tanaka and Chen 2016). A GAM is a non-parametric statistical 

modeling approach commonly applied in ecological studies. GAMs use cubic or spline smooth 

function to define nonlinear relationships between the response and explanatory variables, and 

can serve as either a descriptive or predictive statistical model. GAMs that incorporate the 

Tweedie error distribution are commonly used in the fisheries ecological studies where data are 

often highly skewed with a large proportion of zero observations (Shono 2008; Tanaka et al. In 

Prep). The Tweedie GAM can handle both zero and positive values simultaneously, and provides 

a clear advantage in reconciling non-linear and non-monotonic relationships between the 

response and explanatory variables that are common in nature (Guisan et al. 2002). Both 

modeling components developed by Tanaka and Chen have been integrated into the FVCOM to 

achieve sufficient spatial (NW Atlantic Continental Shelf) and temporal (1978-2015) coverage. 

A geographically weighted regression model is a local model that estimates a set of local 

coefficients for each observation point by specifically giving more weight to the data at closer 

locations than those farther away (Windle et al. 2010). The use of geographically weighted 

regression model will allow us to identify and quantify the relative importance of key 

environmental variables that impact the spatiotemporal distribution of lobsters by area. 

Tanaka and Chen (2016) reconstructed spatiotemporal variability of bioclimate envelopes 

for American lobster in coastal waters of Maine and New Hampshire from 1978 to 2013, and the 

results showed (1) higher habitat suitability in inshore waters for both adult and juvenile lobsters, 

and (2) a statistically significant increasing trend in habitat suitability for American lobster 

during the spring. (Tanaka et al. 2017 & In Review) have also developed a statistical climate-

niche model based on the generalized additive modeling approach to quantify the spatio-

temporal GoM lobster distribution dynamics. Tanaka et al. (2017) showed that spatial 

distribution of lobster shell disease prevalence was found to be strongly influenced by the 

interactive effects of bottom temperature, bottom salinity, and depth. Tanaka et al. (In Review) 

quantified environmental effects on season, sex- and size-specific lobster distribution in the 

inshore Gulf of Maine, and predicted significantly higher lobster abundance under a warm 

climate climatology scenario. The model results have been peer-reviewed and presented to the 

DMR and ASMFC scientists (Tanaka and Chen 2015; Tanaka and Chen 2016; Tanaka et al. 
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2017 & In Review). Li et al. (In Review) quantified the spatial variability in lobster-habitat 

relationships in coastal waters of Maine and New Hampshire from 2000 to 2014. The results 

showed that the direction and strength of the estimated lobster-habitat relationships in the 

western GoM were different with the relationships in the eastern GoM. The bottom water 

temperature played a more significant positive impact on the increase of lobsters in the eastern 

GoM, while the influence of temperature was less significant in the west and the more 

distinguishable drivers of distribution in the western GoM needed to be identified. 

Climate-driven changes in the GoM ecosystem structure is a growing concern for the 

GoM lobster fisheries. Incorporating ecosystem variability into assessment and management of 

the GoM lobster stock has been advocated as a key step towards an ecosystem-based fisheries 

management in mitigating the negative effects of climate change (ASMFC 2014, 2015). 

However, there remains a critical knowledge gap in evaluating the synergistic impacts of climate 

change on functional lobster biogeography and subsequent population dynamics as well as 

maximizing the efficiency and accuracy of the existing assessment and management program. 

Tools are required that allow fishery resource managers to predict the biological and ecological 

consequences of climate change on assessment and management of GoM lobster stock. One of 

the best ways to adapt to altered marine ecosystems brought on by a changing climate is to 

develop modeling capability to improve our ability to forecast the dynamics of populations and 

ecosystems (NMFS 2010). Building on the previous work conducted and current work funded by 

other programs in the Chen Lab, our proposed “coupled biophysical modeling framework” make 

it ideal hind-, now-, and forecasting tool to study the impact of climate change on the GoM 

lobster stock dynamics.   

 

Project Objectives  
The overarching goal of this study is to develop predictive and analytical coupled 

biophysical modeling framework that improve the assessment and management of American 

lobster (Homarus americanus) in a climatically-altered GoM ecosystem. The framework is 

composed of our peer-reviewed bioclimate envelope model, statistical climate-niche model, and 

geographically weighted regression model to project potential changes in functional 

biogeography of American lobster under three different greenhouse gas (GHG) emission 

scenarios developed by the Intergovernmental Panel on Climate Change - Representative 

Concentration Pathways (IPCC-RCPs: 2.6, 6.0, 8.5). Downscaled bottom temperature and 

salinity projections under each GHG emission scenario are used as inputs to the coupled 

biophysical modeling framework to project changes in available habitat and distributional shifts. 

Building on the previous work conducted in the Chen Lab, we want to achieve the following 

objectives:  

● Project possible climate-driven changes in functional biogeography (i.e. spatio-

temporal changes in lobster distribution and suitable habitat availability) of American 

lobster in the Gulf of Maine. 

● Quantify the spatial variability in lobster-environment relationships and identify key 

biotic and abiotic factors that impact the distribution of American lobster in the Gulf of 

Maine. 
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Section I.  Project possible climate-driven changes in functional biogeography of American 

lobster in the Gulf of Maine 

 

 To address the uncertainty associated with climate-driven biogeographical changes in 

commercial fisheries species through an ensemble species distribution modelling (SDM) 

approach, Tanaka et al. has combined an ensemble SDM platform (BIOMOD 2) and a high-

resolution global climate model (NOAA GFDL CM2.6) to quantify spatiotemporal changes in 

habitat of two commercially important species in the Northeast US Continental Shelf Large 

Marine Ecosystem (NEUS-LME); American lobster (Homarus americanus); and sea scallop 

(Placopecten magellanicus).  

Projected oceanographic conditions were developed using the delta method (Fogarty, 

Incze, Hayhoe, Mountain, & Manning, 2008; Hare et al., 2012). The delta method is commonly 

used for future climate projection, which relies on the difference between future climate 

anomalies and a baseline regional climatology (historical climate condition). The delta method 

can remove the climate model projection biases (e.g. drift) and provide a simple and robust 

projection of future climate conditions (Hare et al., 2012). The historical bottom temperature and 

salinity climatologies within the NEUS-LME were developed using high-resolution, quali- ty-

controlled monthly means from the Northwest Atlantic regional bottom temperature and salinity 

climatology for 1955–2012 (0.1°; Seidov et al., 2016). Bathymetry data were obtained from the 

U.S. Coastal Relief Model (NGDC, 1999). Projected bottom temperature and salinity conditions 

used in this modelling framework are from a high-resolution global climate model developed at 

the NOAA Geophysical Fluid Dynamics Laboratory (GFDL CM2.6; Delworth et al., 2012; Saba 

et al., 2016; Figures S4 and S5). CM2.6 is a coupled atmosphere-ocean-land-sea ice global 

climate model, with a 0.1° average horizontal resolution for its ocean component (Saba et al., 

2016). CM2.6 resolves mesoscale oceanographic processes and fine-scale bathymetry within the 

NEUS-LME, leading to a better simulation of the regional ocean and shelf circulation when 

compared to global climate models with coarser ocean components (Saba et al., 2016). The 

monthly bottom temperature and salinity anomalies projections that correspond to spring and fall 

survey efforts were used in this study. The projected temperature and anomalies from CM2.6 are 

based on (a) the standard model initialization procedure where global atmospheric CO2 is fixed at 

a 1,860 pre-industrial concentration to bring the climate system into near-equilibrium, and (b) a 

transient climate response to simulated 1% year-1 increase in global atmospheric CO2 run (i.e. 

2xCO2 simulation) up to 70 years and is then fixed for an additional 10 years. The CM2.6 2xCO2 

simulation can be roughly compared to the IPCC highest greenhouse gas emissions scenario 

(IPCC-RCP8.5). Under the IPCC RCP8.5 scenario, the global mean surface temperature 

increases by 2°C by 2060–2070 relative to the 1986–2005 climatology (Winton, Anderson, et al., 

2014), whereas the CM2.6 2xCO2 simulation projects the global mean temperature increases by 

2°C by year 60–80. This results in bottom temperature warming on the scale of 1.8–2.9°C over 

the simulated 80 years across the NEUS-LMES. 

 An ensemble SDM was calibrated using multi-decadal fisheries-independent surveys 

(1984–2016). The environmental variables used for the ensemble lobster and scallop habitat 

modelling were directly obtained from the scientific bottom trawl survey dataset (1984–2016; 

Figure S2). We used bottom temperature, salinity and depth that were available at each tow 

location (Tanaka & Chen, 2016; Torre, Tanaka, & Chen, 2018). The BIOMOD2-based ensemble 
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SDM algorithm can incorporate species presence–absence data and combine multiple SDM 

algorithms to provide robust species occurrence–environment relationships. Once SDMs were 

fitted with optimized parameters, all SDMs were run three times each using a randomly chosen 

80% of the presence–absence data, with the remaining 20% of the data being used to cross-

validate model results. Statistically weighted species-specific ensemble SDM outputs were 

combined with 80 years of projected bottom temperature and salinity changes in response to a 

high greenhouse gas emissions scenario (an annual 1% increase in atmospheric CO2). Weighted 

species-specific ensemble SDM was used to project habitat suitability of lobster and scallop 

across the NEUS-LME under historic bottom temperature and salinity conditions and over the 

future 80 years based on the transient climate-driven bot- tom temperature and salinity changes 

in response to the doubling of 1% CO2 per year increase scenario applied in the NOAA GFDL 

CM2.6 (Saba et al., 2016).  

 The final ensemble model for lobster and scallop produced a spatial distribution of 

habitat that corresponds well to consensus of the general, broad-scale distribution of these 

species over the NEUS-LME (Figure I-1). In general, a highly suitable habitat (>0.66) for lobster 

was found along the inshore GOM up into the Bay of Fundy. During the spring, western Long 

Island Sound and the area south of Rhode Island showed high habitat suitability. For scallop, a 

highly suitable habitat (>0.66) was found along offshore MAB, SNE and GB areas (Figure I-1). 

Additionally, a highly suitable scallop habitat was found along the inshore GOM along with 

select offshore shoal areas.  

 

 
Figure I-1. Maps showing the habitat suitability (probability of presence) for American lobster and sea 

scallop across the study area as predicted by the final ensemble model under the historical climatology (1955–

2012). The colour ramp corresponds to predicted habitat suitability, where dark blue indicates low habitat 

suitability and red indicates high habitat suitability (scaled 0–1) 

 

 Projected warming across the NEUS-LME over the 80 years resulted in large spatial 

changes in habitat suitability of lobster and scallop (Figure I-2). For lobster, deep areas within 

the GOM showed a strong increasing trend in habitat suitability. Lobster habitat suitability in 

inshore areas remained stable during the spring but showed a declining trend during the fall. The 

general distribution of changes in scallop habitat suitability over the study period showed a clear 

north-positive, south-negative trend (Figure I-2), with habitat suit- ability declined in the MAB, 

SNE and GB areas. Within GOM-GB, inshore areas along with select shoal areas showed an 

increase in scallop habitat suitability while deeper offshore areas remained relatively stable.  
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Figure I-2. Temporal change in habitat suitability (probability of presence) over the future 80 years of 

changes (linear trend per 80 years) in bottom temperature and salinity for American lobster and sea scallop. 

The colour ramp corresponds to a linear trend in habitat suitability with red areas having a positive change 

and blue areas having a negative change scallop 

 

 Statistically significant changes (p < 0.05) in habitat suitability for both species were 

found over a large portion of the study area (Table I-1). Sea scallop undergoes a northward shift 

over the study period, while American lobster moves further offshore. The ensemble projections 

showed that several management zones were identified with increases and decreases in species-

specific habitat. Uncertainty due to variations in ensemble member models was also found in the 

direction of change within each management zone (Table I-2).  
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 This study provides ensemble estimates of climate-driven changes and associated 

uncertainties in the biogeography of two economically important species in the United States. 

Projected climate change in the NEUS-LME will pose management challenges, and our 

ensemble projections provide useful information for climate-ready management of commercial 

fisheries. 

 

Section II.  Quantify the spatial variability in lobster-environment relationships to improve 

American lobster stock assessment in the Gulf of Maine. 
 

 To determine whether consideration of dynamic bottom temperatures and water column 

depth improved estimation of abundance indices for the lobster stock in the Gulf of 

Maine/Georges’ Bank Large Marine Ecosystem (GOM-GB LME), retrospective patterns and 

model fit were compared between runs of a length-based assessment model for lobster using 

traditional design-based abundance indices and model-based abundance indices created with 

environmental covariates bottom temperature and depth.  

 Modelled abundance indices were generated using a delta-GLMM approach. The delta-

GLMM applied in this study (R VAST package version 3.2.2; Thorson and Barnett 

2017; Thorson 2019) uses catch data from a single given survey with optional environmental 

covariates for density and (or) catchability to derive modelled abundance indices. These 

modelled indices replaced the traditionally used design-based abundances indices in the Lobster 

Stock Assessment model (LSA).  

 The LSA is a seasonal, integrated, length-structured assessment model for lobster in the 

GOM–GB LME. It was initially developed and coded with ADMB (Chen et al. 2005; ASMFC 

2015). The program codes were later modified by Cao et al. (2017a, 2017b) and Tanaka et al. 
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(2019). Owing to the inability to appropriately and reliably age wild-caught lobster and thus lack 

of knowledge on age–length relationships (Wahle et al. 1996; Chang et al. 2011; ASMFC 2015), 

a length-based assessment model was deemed more appropriate than an age-based assessment 

model (Chen et al. 2005), a practice common with many crustacean species (Chang et al. 

2011; Punt et al. 2013). The population dynamics equation this model employs is: 

 

 
 

where Nt,m is a vector of the number of lobster in each of the pre-specified size bins in year t and 

season m, F is seasonal fishing mortality, M is seasonal natural mortality, G is the seasonal 

growth transition matrix (estimated a priori from an individual-based model; Mazur et al. 2018), 

and R is the recruitment to each size bin (Chen et al. 2005). In the LSA, G and M are pre-

specified, and R and F are estimated. G is averaged across both sexes, a practice commonly and 

historically done with the LSA (Tanaka et al. 2019). M is expected to be the same for both sexes 

and so no average is taken (ASMFC 2015). Additionally, spawning stock biomass (SSB) can be 

estimated using proportion female and proportion mature per-size-bin vectors. A detailed 

explanation of this model can be found in Chen et al. (2005), ASMFC (2015), and Tanaka et al. 

(2019).  

 For this study, the delta-GLMM was run on each of six surveys individually before being 

used in the LSA. The six surveys were the spring and fall MEDMR–NHFGD Inshore Bottom 

Trawl Surveys, the spring and fall MADMF Inshore Bottom Trawl Surveys, and the spring and 

fall NEFSC Bottom Trawl Surveys. Model fit, retrospective patterns, and hindcasted biological 

reference points were all compared between LSA runs to determine any improvements to 

modelling from modelled indices over design-based.  

 Retrospective patterns are summarized in Figure II-1. Mohn’s Rhos for SSB 

and R improved across all model runs, whereas Mohn’s rho for F was worse across all nine runs. 

Overall, two of nine model runs showed improved cumulative retrospective patterns over the 

design-based runs. It also appears that temperature as a density covariate produces smaller 

retrospective patterns over temperature as a catchability covariate and that the reverse is true for 

depth. Model fits are summarized in Figure II-2. OFV remained the lowest in the stock 

assessment when using the traditional design-based indices. All other OFVs were between 9% 

and 42% larger. However, of the model-based OFVs, the addition of covariates over model-

based with no covariates yielded significantly improved results, the smallest OFV being for Run 

No. 5 (temperature and depth as catchability covariates). Hindcasted fishery statuses did not 

match, revealing that historical management would have been different if these modelled indices 

were used in place of the design-based (Figure III-3).  

 Overall, these indices provided relatively small improvements to retrospective bias and 

moderate worsening of model fit for the American lobster assessment model. This could be due 

to survey design and coverage of the population, which may be sufficient enough as to capture 

the variability caused by environmental covariates that this study was explicitly estimating (Yu 

et al. 2013; Thorson et al. 2015) It is important to note that even though incorporation of these 

variables improves retrospective patterns in the stock assessment, this is at the cost of decreased 

model fit. The disagreement between retrospective patterns and OFVs could point to robust 

survey designs that accurately capture changes in population density when spatiotemporal 
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changes in catchability are accounted for. The American lobster stock in the GOM–GB LME is 

unique compared with most other marine stocks. They are privileged with near-full spatial 

coverage of multiple fishery-independent surveys over a long time series (Chen et al. 2006). 

These high-intensity sampling efforts seem capable of accurately tracking population changes 

over space and time independent of explicit consideration of environmental effects. The strength 

of geostatistical models such as the delta-GLMM comes from their ability to extrapolate into 

low-sampled areas and times using statistical assumptions of population densities and often using 

environmental covariates (Thorson et al. 2015). This ability appears fruitless with a well-

surveyed species like American lobster, whose fine-scale population densities appear to be well-

documented already from surveys that encompass both their inshore and offshore ranges (Chen 

et al. 2006). 

 

 

 
Figure II-1. Absolute Mohn’s rho values for each Lobster Stock Assessment model (LSA) run for SSB, R, and F. 

Mohn’s rho values are displayed on top or inside of their respective boxes. Absolute summed Mohn’s rho values for 

each run are at the top of each column. The X axis denotes each LSA run as either “DB” (design-based) or as “A/B”, 

where A represents the density covariates used in index calculation and B represents the catchability covariates used. 

X = none, T = bottom temperature, D = depth, TD = temperature and depth. 
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Figure II-2. Differences between objective function values (OFVs) for each LSA run with model-based indices 

from OFVs of the LSA run with design-based indices. The design-based OFV was 67 777.7. OFVs for each model-

based run are displayed inside their respective bars. The X axis denotes each LSA run as “A/B”, where A represents 

the density covariates used in index calculation and B represents the catchability covariates used. X = none, T = 

bottom temperature, D = depth, TD = temperature and depth. Order of indices left to right represent highest to 

lowest differences. All OFVs from LSA runs using model-based indices were higher than those using the design-

based indices, making the design-based the optimal model using OFV as the indicator. 
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Figure II-3. Reference abundance 1984–2013 for the optimal model (top panel) and design-based model (bottom 

panel). Biological reference points (BRPs) are calculated separately for each model. Numbers are in millions of 

individuals. 

 

 

Section III. Evaluating consequences of lobster-environmental model assumptions when 

projecting habitat suitability  

 

 Relationships between lobster survey catch and environmental conditions were used to 

estimate and forecast lobster habitat suitability using a bioclimate model under a future warming 

schema. Furthermore, we employed use of “what-if” scenarios in an attempt to determine how 

changes in model assumptions changed bioclimate model output. 

 The bioclimate model used in this study was developed by Tanaka and Chen (2015; 

2016). It can determine spatially explicit changes in habitat suitability over time from regional 

environmental conditions using relationships between lobster survey catch and environmental 

variables and extrapolating onto grids with environmental data independent of those used in 

determining the relationships.  

 Bottom temperature and bottom salinity anomalies from the IPCC were used to estimate 

future bottom temperature and salinity fields through a downscaling process known as the delta 

method: a commonly used and robust statistical approach (Hare et al. 2012; Tanaka et al. 2020) 

shown to reduce bias in these types of estimations (Navarro-Racines et al. 2020). Lobster habitat 

suitability index (HSI) values for each sex, season, and life stage were then calculated for each 

field. Each HSI field was mapped using ordinary Kriging.   

 A what-if scenario in the context of this study was an experimental simulation of the 

bioclimate model in which one aspect of the input data is altered from the base case. Thus, all 

changes made were to the calculation of SIs and extrapolation grids, not to our forecasting 

methodologies. The intent of these scenarios was to determine changes in model output and to 

infer larger possible effects on fisheries management. There were seven what-if scenarios tested 

in this study: 

 Scenario 1: Model-Generated vs. Interpolated Environmental Data.  

 Scenario 2:  Full vs. Partial Spatial Coverage of Survey Data.  

 Scenario 3:  Stock-wide vs Species-wide Suitability Indices. 

 Scenario 4: Inclusion vs. Exclusion of Important Components of Habitat. 

 Scenario 5: Seasonal vs. Annual Suitability Relationships.  

 Scenario 6: Separate vs. Combined Sexes. 

 Scenario 7: Separate vs. Combined Life Stages.  

 Considering the base case, inshore habitat (and Georges Bank to some extent) appeared 

more preferential than offshore habitat, with the highest HSI values found in the inshore eastern 

GOM (Figures III-1, III-2). Additionally, spring had higher HSIs than the fall for all 

combinations of sex and life stage for both the historical reference period and the future scenario. 

Differences between sexes and between life stages appeared negligible. The trends discussed 

previously remained largely constant from the base case through the remaining scenarios, with 

each scenario causing small intuitive changes in HSI based on variables considered.  

 Input data used in this type of HSI modelling shapes the inherent biological and 

population assumptions that govern model predictions: the input data chosen is a consequence of 
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the researcher’s assumptions (Rolaff and Kernohan 1999). This study further asserts that in these 

types of situations, biological realism must be determined a priori by the researcher as there is a 

lack of reliable metrics to determine this from bioclimate model results. It is shown here that 

alterations to this assumed realism as was done in the “what-if” scenarios have potential to 

severely impact model output and thus negatively impact fisheries management decisions. Direct 

comparisons to explain this point can only be done with a stock or population that is well 

described with associated data and a large knowledgebase explaining its function. These features 

made American lobster in the GOM an ideal testbed for the scenarios evaluated in this research 

framework, especially those that were known to be biologically unrealistic prior to testing.  

 The American lobster fishery in the GOM is expected to change due to shifting 

environmental conditions. Historically, the bulk of fishing effort has been concentrated in the 

summer and fall months (Boenish and Chen 2018), targeting the lobster when they are in 

shallower waters. This may be expected to shift later into the fall as spring HSI decreases and fall 

HSI increases. This is due to lobsters’ propensity to behaviorally thermoregulate by following 

suitable thermal habitats inshore in the spring and offshore in the fall (Aiken and Waddy 1986; 

Crossin et al. 1998). Initially, the downward trends over time for HSI in the spring seemed to be 

consistent with upwards trends in the fall in this study. However, the spring forecasts show a loss 

of the best environments for lobster over time (complete loss of “excellent” habitat and halving 

of “good” habitat), whereas the fall is simply gaining new areas of “fair” habitat. Thus, overall 

suitability in the GOM is expected to decline out to 2099. This, coupled with the fact that areas 

with the most suitable habitat historically seem to be the areas most affected by a changing 

environment, illustrates a scenario similar to what happened to the lobster population and fishery 

in SNE where climate change has partially led to low recruitment and subsequent fishery 

collapse (Howell 2012; ASMFC 2015). Climate change is predicted to negatively alter the 

suitability of habitat for lobster in the GOM and this poses a threat to the future of the fishery in 

this region.  

 The non-lobster specific results have led to four separate discussions, each of which is 

summarized here. Choice of the type of extrapolation data for environmental covariates used in 

the HSI process can ultimately affect results, but in often unpredictable ways. Spatial and 

temporal scales are exceedingly important and data from outside extrapolation areas should 

never be used to generate suitability indices for inside the area. If seasonality is important in the 

target population, than it must be considered in the bioclimate process. Exclusion of important 

habitat variables can lead to severe under or overestimations of future habitat change and careful 

a priori decisions about these variables must be made. If there exist differences in environmental 

preference between sexes or life history stages, these may or may not be important depending on 

the scale of the analysis. However, unlike the other problems discussed thus far, conducting an 

analysis of separate life history groups can determine whether that action is appropriate for the 

final model.  

 GOM lobster is a very well-studied, well surveyed, and data-rich species (Chen et al. 

2006; ASMFC 2015; Hodgdon et al. 2020). In this sense, it is different from many other 

economically important species across the oceans. This inherent knowledge of GOM lobster 

dynamics and life history provided insight into the appropriate model assumptions and input 

data. For species with a lack of biological knowledge or data availability, it can be more 

treacherous to calculate and forecast HSIs. Biological realism would be harder to interpret and 
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understand, potentially leading to inherently less than accurate information about the target 

species habitat and misleading interpretations of forecasts. Data input and their inherent 

assumptions when forecasting HSI should be as biologically realistic as possible.  

 

 
Figure III-1. Spatial HSI from the base case (Row 1) for the historical period (Columns 1 and 3) and the future 

period (Columns 2 and 4) as well as spatial differences for each of the seven scenarios (Rows 2 through 5) to their 

respective base case maps in row 1 (Note that the base case maps in columns 1 and 3 are the same and those in 

columns 2 and 4 are the same). Blue represents areas in a given scenario that were predicted to have a lower HSI 

than the base case did. Red represents areas in a given scenario that were predicted to have a higher HSI than the 

base case did. The darker the respective shade, the greater the difference from the base case. Above each map is the 

scenario name and the average spatial HSI for that period and scenario. Results are for spring female adults. Note 

scenario 5 is combined seasons, scenario 6 is combined sexes, and scenario 7 is combined life stages. 
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Figure III-2. Spatial HSI from the base case (Row 1) for the historical period (Columns 1 and 3) and the future 

period (Columns 2 and 4) as well as spatial differences for each of the seven scenarios (Rows 2 through 5) to their 

respective base case maps in row 1 (Note that the base case maps in columns 1 and 3 are the same and those in 

columns 2 and 4 are the same). Blue represents areas in a given scenario that were predicted to have a lower HSI 

than the base case did. Red represents areas in a given scenario that were predicted to have a higher HSI than the 

base case did. The darker the respective shade, the greater the difference from the base case. Above each map is the 

scenario name and the average spatial HSI for that period and scenario. Results are for fall female adults. Note 

scenario 5 is combined seasons, scenario 6 is combined sexes, and scenario 7 is combined life stages. 
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 The work in the Chen Lab continues beyond this research grant. There are ongoing 

projects focused on lobster life history in the context of changing environments. One such 

project is determining how stock assessment modelling may be affected by shifting growth and 

size-at-maturity in relation to lobster and another is focused on establishing relationships 

between spawning biomass, recruitment, and thermal habitat.  

 

Section IV.  Examining scale-dependent nonstationary environmental effects on American 

lobster spatial distribution and habitat suitability  

 

IV-1. Introduction 

 Knowing that the American lobster fishery is the most valuable fishery and that species’ 

distributions commonly shift in pursuit of ideal habitat conditions (Pinsky et al., 2013; Greenan 

et al., 2019), it is important to understand and accurately estimate the spatial distribution of this 

species, especially in a rapidly changing environment. 

 Although the GOM/GBK lobster stock is not overfished and overfishing is not occurring 

(ASMFC, 2020), lobster abundance throughout the GOM is not uniformly or randomly 

distributed (Steneck & Wilson, 2001). Environmental factors contribute to the spatial distribution 

of lobster abundance, and evidence of temperature, salinity, and productivity gradients that range 

from northeast to southwest GOM have been observed (Lynch et al., 1997; Pettigrew et al., 

1998; Chang et al., 2016). These gradients may be attributed in part by the Gulf of Maine Coastal 

Currents (GMCC), which form cyclonic currents across the GOM (Townsend et al., 2015; Chang 

et al., 2016). The GMCC can be further distinguished as two sub currents; the Eastern Maine 

Coastal Current (EMCC) and the Western Maine Coastal Current (WMCC), where the EMCC 

diverges offshore in the Penobscot bay area and the WMCC begins along the coast (Xue et al., 

2008; Chang et al., 2016). These currents can affect environmental variables as well as processes 

and interactions such as primary production levels, stock-recruitment relationships, and vertical 

mixing (Incze et al, 2010; Chang et al., 2016).  

 Species distribution models (SDMs) are widely used to estimate and predict organisms’ 

spatial and/or temporal distributions across the world (Bakka, 2016; Diarra et al., 2018; Becker 

et al., 2020). Spatial and/or temporal nonstationarity is often present in ecological systems when 

relationships between response and explanatory variables vary across space and/or time, which 

means that the association between response and explanatory variables decrease with increasing 

distance (Brunsdon et al., 1996; Fotheringham et al., 2002). Past literature has demonstrated 

evidence of spatial nonstationarity in the GOM region (Li et al., 2018; Staples et al., 2018). 

Accounting for nonstationarity in SDMs allows for the incorporation of spatial and/or temporal 

dependencies that cannot be explained by environmental variables alone (Bakka et al., 2016). 

However, past literature often have not utilized SDMs in ways that can account for spatial and/or 

temporal nonstationary processes (Gorman et al., 2013; Chang et al., 2016; Becker et al., 2020) . 

 Generalized linear models (GLMs, Nelder and Wedderburn, 1972), generalized additive 

models (GAMs; Hastie and Tibshirani, 1986), and geographically weighted regression (GWR; 

Brunsdon et al., 1996) are a few commonly used models for estimating species distributions. 

Inherently, GLMs and GAMs are stationary models because they estimate global relationships 

between the response and explanatory variables that are applied to all locations. In contrast, 

GWR models can estimate unique parameters at each location across space, thus allowing for the 
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assumption of spatial nonstationarity to be met (Charlton & Fotheringham, 2009). However, a 

limitation of GWR models is that they cannot be used to make estimations outside the study area 

(extrapolation) or for forecasting to novel periods, as doing so would violate the assumption of 

nonstationarity one is trying to meet (Osbourne et al., 2007; Hothorn et al., 2011; Li et al., 2018). 

Since extrapolation and forecasted estimations are often desired when modeling species 

distributions, one recommended approach is to utilize multiple stationary models across a region 

of interest (Fortheringham et al., 2002; Windle et al., 2009). This approach will not only allow 

for extrapolation and forecasting procedures, but also better account for assumptions of 

nonstationarity as using more than one model will result in multiple unique parameters estimated 

across localized areas. 

 We explore the effects of nonstationary modeling on lobster spatial distributions and 

compare the results to those of a stationary model. To test the effects of spatial nonstationarity, 

we develop season-, sex-, and size- specific models that predict the spatial distribution of 

American lobsters using GAMs of varying spatial scales and extents. Variation in spatial 

distribution between the models is evaluated and potential management implications are 

discussed. 

  

IV-2. Methods and materials 

IV-2-1.  Data 

 American lobster abundance data were sourced from the Maine-New Hampshire Inshore 

Bottom Trawl Survey. The Maine-New Hampshire Inshore Bottom Trawl Survey will be 

referenced as the bottom trawl survey. The bottom trawl survey has been conducted by the 

Maine Department of Marine Resources (DMR) since the fall of 2000. This survey is 

semiannual, where separate surveys are conducted in the fall and spring seasons of each year. 

The bottom trawl survey spans 4,665 square nautical miles (16000.5 km2) (Sherman et al., 2005) 

and is subdivided into five regions (Figure IV-1). The five regions include (1) New Hampshire 

and Southern Maine, (2) Mid-Coast Maine, (3) Penobscot Bay, (4) Mt. Desert Island, and (5) 

Downeast Maine (Figure IV-1). 
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Figure IV-1: Maine-New Hampshire Inshore Bottom Trawl Survey regions and depth strata. 

This survey is subdivided into five regions which include (1) New Hampshire and Southern 

Maine, (2) Mid-Coast Maine, (3) Penobscot Bay, (4) Mt. Desert Island, and (5) Downeast Maine. 

White spots are areas where the survey are not able to sample due to oceanographic or 

topography limitations. Pink points are previous trawl sample locations from the 2000-2019 

surveys. 

 

 The survey area extends 12 nautical miles (22.22 km) offshore and is broken up into 4 

different strata (Figure IV-1). A target of 115 stations is set for each survey, creating a sampling 

density of roughly 1 station for every 40 NM2 (137.20 km2). Random stations in this survey are 

chosen by dividing the survey area into a 1NM2 (3.43 km2) grid, where cells are chosen at 

random using an Excel random number generator (Sherman et al., 2005). The data used in this 

study only included random stations, as fixed stations were removed from the surveys over time 

because they caused inconsistencies between years (R. J. Peters, personal communication, 

February 24, 2020). Each survey aims for a target tow of 20 minutes at a speed of 2.2-2.3 knots 

(4.1-4.3 km/h), which covers approximately 0.8 NM (1.48 km). Data from 486,971 individual 

lobsters were included in this study.  
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Figure IV-2: Visual representation of each model utilized in this study. Each colored rectangle 

represents a separate GAM that was run on the observed data points contained within that area/ 

regions of the ME-NH Bottom Trawl Survey. 

 

 This study utilizes data from the 2000-2019 bottom trawl surveys. Biological data taken 

on each lobster include carapace length (mm), sex, presence of eggs or v-notches, and if any 

noticeable damage is present. Lobsters are then sorted into baskets by sex and baskets are 

weighed once filled (Sherman et al., 2005). Data have been standardized to twenty-minute tows 

to ensure all catch, weight, and length frequency information is comparable. In addition to 

biological data, bottom water salinity, bottom water temperature, and depth data were collected 

during each tow by using a Sea-Bird ElectronicsTM 19plus SEACAT profiler, which was 

attached to the starboard door wire, turned on and lowered overboard (Sherman et al., 2005). The 

net used for this survey is a type of modified shrimp net that is used for “near-bottom dwelling 

species”, although not intended for any single species in particular (Sherman et al., 2005). More 

information about the Maine-New Hampshire Inshore Bottom Trawl survey procedures, 

protocols, or specifics can be found in Sherman et al. (2005). This survey has been found to yield 

informative data for studying lobster distributions and habitats in the GOM (Tanaka & Chen, 

2016; Tanaka et al., 2019; Hodgdon et al., 2020). 

 Bottom temperature, bottom salinity, average depth, latitude, and longitude information 

were used from the bottom trawl survey. Distance from shore and median sediment size were 

also estimated. Distance from shore was estimated using the “distances” function from the 

package “distances” (Savje, 2019) in R, which finds the shortest distance between points, in this 

case, the distance between the midpoint latitude and longitude of a tow and the closest point on 

the coast. Sediment data were sourced from the East-coast Sediment Texture Database which is 

run by the United States Geological Survey (USGS, 2014). This survey was last updated in 2014 

and contains information such as location, description, texture, and size (phi, -log of grain size) 

taken by different marine sampling programs across various locations around the world. Both 

mean and median sediment size values are supplied in this dataset, but median sediment size was 

used over mean sediment size, as the former is more robust to outliers (Tůmová et al., 2019). The 

median grain size at each survey location was estimated using thin plate splines. These data can 

be found at https://woodshole.er.usgs.gov/openfile/of2005-1001/htmldocs/datacatalog.htm and 

More information about the East Coast Sediment Texture Database can be found in U.S 

Geological Survey (2014). 

 Although models were built using bottom trawl survey data, additional bottom water 

temperature and bottom water salinity data were needed to create interpolated distribution plots. 

Thus, bottom temperature and bottom salinity data throughout the study area were obtained by 

spatially interpolating Finite-Volume Community Ocean Model (FVCOM) data. The FVCOM is 

https://woodshole.er.usgs.gov/openfile/of2005-1001/htmldocs/datacatalog.htm
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an advanced ocean circulation model that uses an unstructured grid format, making it highly 

applicable for use in regions with complex coastlines and bathymetry (Chen et al., 2006; Li et al., 

2017). The FVCOM was developed by University of Massachusetts Dartmouth and Woods Hole 

Oceanographic Institution. More information about the FVCOM can be found in Chen et al. 

(2006). 

 Forecasted distributions were made for the period 2028-2055. The forecasted bottom 

temperature and bottom salinity data were sourced from the National Oceanic and Atmospheric 

Administration (NOAA) and represent an ensemble projection of all models used to create the 

Intergovernmental Panel on Climate Change’s (IPCC) Coupled Model Intercomparison Project 

Phase 5 (CMIP5) data (available from https://psl.noaa.gov/ipcc/ocn/). Data for the 

Representative Concentration Pathway (RPC) 8.5 “business as usual” scenario were used. These 

data are forecasted anomalies based on the reference time period 1956-2005 and are estimated 

for the period 2006-2055. These data are anomalies, and thus hindcasted bottom temperature and 

bottom salinity data must be used in tandem from the same reference period. The earliest 

available FVCOM data begins in 1978 rather than 1956, limiting the available reference period 

in this study to 1978-2005. With the reference period reduced from 50 to 27 years, the CMIP5 

forecasting period must also be reduced respectively, from the initial 2006-2055 to 2028-2055 

for this study. The forecasting period 2028-2055 is used because it represents the maximum 

amount of FVCOM data that can be used while also confidently applying IPCC forecasted 

anomalies. Delta downscaling methods were also applied so that forecasted anomalies could be 

applied to the same scale as the FVCOM data. Specifically, bivariate spline interpolation was 

applied using the package “akima” in R (Akima and Gebhardt; 2016). A spatial resolution of 

0.01 (1.11 km error) was used for all data to ensure comparability between datasets. 

 

IV-2-2 Model Development 
 Lobster densities were standardized per tow and divided into eight groups based on 

season (fall and spring), sex (female and male), and size (adult and juvenile; Li et al., 2018; 

Chang et al. 2016). Juvenile lobsters were distinguished as lobsters with carapace lengths 

<50mm due to differences in activity patterns (Lawton & Lavalli, 1995). Each of the eight 

groups were modeled independently under 3 different techniques: (1) A generalized additive 

model (GAM) that assumes stationary relationships between a species density and environmental 

variables; (2) a GAM that assumes nonstationary density-environment relationships between 

eastern and western GOM (nonstationary version 1, NSV1), and (3) a GAM that assumes 

density-environment nonstationary relationships across eastern, central, and western GOM 

(nonstationary version 2, NSV2). Partitioning of data for these models can be visualized in 

Figure IV-2. 

 Previous literature in the GOM have estimated species distributions using stationary 

models at a large spatial scale (Chang et al., 2016; Becker et al., 2020). This technique is 

represented in this study by the “Stationary GAM” model, which assumes spatial stationarity and 

is applied at the largest spatial scale. This technique also assumes that nonlinear (but stationary) 

relationships between lobster density and environmental factors are sufficient to accurately 

predict a species spatial distribution across an ecologically complex region. Other literature has 

highlighted differences in environment-abundance relationships between localized regions (Li et 

al., 2018; Liu et al., 2019). Thus, the bisected (NSV1) and trisected (NSV2) models were 

https://psl.noaa.gov/ipcc/ocn/
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constructed at smaller spatial scales to capture evidence of these differences. The purpose of this 

study is to explore how spatial distribution predictions change under models with varying 

assumptions of nonstationarity (or lack thereof) in hindcasting and forecasting scenarios. 

The first set of nonstationary models (NSV1) broke up the data into east and west zones. The 

western zone used data in regions one and two from the ME-NH bottom trawl survey (Figures 

IV-1 and IV-2). Eastern GOM was represented by data from regions three, four, and five in the 

trawl survey (Figures IV-1 and IV-2). The decision to split the data up in this way was driven by 

the GOM coastal currents and the supporting literature that states the southern extent of the 

EMCC includes the Penobscot Bay region (Xue et al., 2008; Chang et al., 2016).  

 Although some literature supports this decision, it is difficult to pinpoint a fine line of 

where the EMCC diverges and the WMCC begins. Thus, another argument can be made in 

which the Penobscot Bay area (≅region 3 in the bottom trawl survey) could act as a potential 

buffer zone, in which this area of possible mixing between currents could throw off GAM 

relationship curves if the this area were to be included into a particular side. One previous study 

has used a similar trisected approach to view relationships between initial intra-annual molts of 

American lobster and bottom temperatures in the GOM (Staples et al., 2018). Consequently, the 

NSV2 model is built in such way that regions one and two of the bottom trawl survey represent 

the western GOM, region three will have its own separate models built to represent central GOM 

(the buffer zone between the EMCC and WMCC; Figure IV-1), and regions four and five will 

represent eastern GOM (Figure IV-1). 

 Prior to model construction, covariance matrices and variance inflation factor (VIF) tests 

were run to check for variable independence and multicollinearity. Running multiple covariance 

metrics showed a high dependence between distance from shore and average depth variables. 

Distance from shore was kept over average depth because distance from shore had a lower 

covariance value amongst the rest of the variables than average depth. Variance inflation factors 

quantify the multicollinearity amongst variables. Variables with VIF numbers >3 were excluded 

from the model (Zuur et al., 2009), supporting the decision to remove average depth as a variable 

when building the models. VIF numbers larger than 3 were excluded because including highly 

correlated variables in the same model would be statistically similar to including a variable in the 

same model twice, which could lead to biased or incorrect model estimates (Gareth et al., 2014). 

The following variables were shown to be significant in every GAM: latitude and longitude 

combined as an interaction term, and bottom temperature. Bottom salinity, distance from shore, 

and sediment size were found to be significant in some models, but not all. Significant variables 

and deviance explained for each group are summarized in Tables IV-1 & IV-2, respectively. 
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Table IV-1: Non-Significant Variables for Each Model and Group Type. Group acronyms are 

denoted as follows: FL= fall, SP= spring, FJ= female juvenile, FA=female adult, MJ=male 

juvenile, MA= male adult. Such that for example FLFJ represents data taken from female 

juvenile lobsters in the fall season. “AS”= all significant, meaning all tested variables were 

significant to that particular model and group. “DFS”= distance from shore variable. 

“Sediment”= median sediment size variable, and “Salinity” = bottom salinity variable. 

Group Traditional 

GAM 

NSV1 

(East) 

NSV1 

(West) 

NSV2 

(East) 

NSV2 (Middle) NSV2 

(West) 

FLFJ Salinity Salinity Sediment Salinity Salinity, DFS Sediment 

FLMJ AS Salinity Sediment Salinity Salinity Sediment 

FLFA Salinity Salinity Sediment AS Salinity, DFS, 

Sediment 

Sediment 

FMLA Salinity AS Sediment AS Salinity, DFS Sediment 

SPFJ AS AS AS AS Salinity, 

Sediment 

AS 

SPMJ AS AS Sediment AS Salinity, 

Sediment 

Sediment 

SPFA AS AS AS AS Salinity, 

Sediment 

AS 

SPMA AS AS AS AS Salinity, DFS AS 
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Table IV-2: Deviance Explained for Each Model and Group Type. See Table IV-1 for group 

acronym explanation.  

Group Traditional 

GAM 

Average 

NSV1 

NSV1 

(East) 

NSV1 

(West) 

Average 

 NSV2 

NSV2 

(East) 

NSV2 

(Middle) 

NSV2 

(West) 

FLFJ 40.0% 52.5% 52.8% 52.2% 62.1% 62.3% 71.8% 52.2% 

FLMJ 40.7% 52.5% 52.8% 52.2% 63.2% 63.7% 73.6% 52.2% 

FLFA 42.6% 51.8% 47.9% 55.6% 56.3% 57.7% 55.7% 55.6% 

FLMA 41.7% 51.9% 49.2% 54.6% 55.6% 56.6% 55.5% 54.6% 

SPFJ 41.7% 51.9% 47.6% 56.1% 56.8% 48.5% 65.8% 56.1% 

SPMJ 44.0% 52.5% 50.5% 54.5% 58.1% 52.6% 67.1% 54.5% 

SPFA 34.4% 36.2% 35.0% 37.3% 40.9% 37.3% 48.2% 37.3% 

SPMA 38.8% 39.8% 41.8% 37.7% 44.5% 45.7% 50.6% 37.7% 

 

 Generalized Additive Models (GAMs) were used to evaluate the relationships between 

lobster abundance and environmental variables. A GAM is an extension of a generalized linear 

model, with a smoothing function added. GAMs follow the assumptions that the functions are 

additive, and the components of the functions are smooth (Guisan et al., 2002). A separate GAM 

was created for each group of lobsters that differs in season, sex, and size, based on the 

assumption that males, females, juveniles, and adults will all respond to environmental variables 

differently, and that seasons will also impact the relationships with the environment differently. 

We used a tweedie GAM to estimate lobster abundance (y). GAMs were built using a backward 

fitting technique based on covariate significance (p<0.05; Chang et al., 2016). A GAM using all 

potential environmental variables can be written as: 

 

Lobster abundance (y) = s(La, Lo)+s(Bt)+s(Bs)+s(DFS)+s(Ss) 

 

where s is a spline smoother, La, Lo is an interaction term between latitude and longitude, Bt is 

bottom temperature (°C), BS is bottom salinity (ppt), DFS is distance from shore (decimal 

degrees), and Ss is median sediment size (phi). 

 Hindcasted distribution plots were created for each lobster season 𝗑 sex 𝗑 size group and 

for each model for the years 2000, 2006, 2012, and 2017 for a total of 98 plots. Although there 

are bottom trawl survey data available from 2000-2019, environmental FVCOM data used is 

only available until 2017, limiting the most recent available hindcasting year that can be spatially 

interpolated to 2017. Additionally, these years were chosen because they are roughly evenly 

spaced throughout the hindcast period of interest, albeit these methods could be applied to any 

year(s) 2000-2017. Forecast distribution plots were also estimated for the 2028-2055 year period, 

for a total of 24 forecast distribution plots. Differences between stationary and nonstationary 
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approaches were determined by calculating relative differences between density distribution 

estimates. Relative differences were estimated using the equation 

 

Relative difference (i)=
𝑛𝑜𝑛𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑖) − 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 

(𝑖)𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑖)100
 

 

where i is a location within the study area and “nonstationary” represents the estimated lobster 

density from either the NSV1 or the NSV2 model. Relative difference plots were generated for 

each lobster season 𝗑 sex 𝗑 size group and for the same years as the hindcast and forecast 

distribution plots. These plots demonstrate the magnitude and location of where the stationary 

models tend to over or under predict abundances in relation to the other approaches. All 

distribution and relative difference plots were interpolated using bivariate splines using the 

package “akima” in R in order to achieve high resolution smooth distributions (Akima and 

Gebhardt, 2016).  

 After calculating the relative differences between stationary and nonstationary models, 

the interquartile ranges (IQRs) of the relative differences were calculated for each localized 

region. The interquartile range represents the middle 50% of the data (e.g. IQR≅ -2 to 13%), 

where the first number listed represents quartile one and the second number listed represents 

quartile 3. The IQR can be found by subtracting quartile 1 from quartile 3. Negative quartile 

numbers quantify how much the stationary model predicted higher density estimates than the 

nonstationary model (in percent relative difference), while positive quartile numbers quantify 

how much the stationary model predicted lower density estimates than the nonstationary models 

(in percent relative differences). For example, an IQR≅ -2 to 13% would indicate that quartile 1 

is at -2% and quartile 3 of the data is at 13%. This means that the middle 50% of data for this 

region ranges from a 2% relative overestimation to a 13% underestimation of lobster densities by 

the stationary model, when compared to the nonstationary model. This also indicates that the 

majority of the IQR in this region is positive, suggesting that the stationary model tends to 

estimate lower densities than the nonstationary model in this region. 

 

IV-2-3 Model fitting and validation 
 Root Mean Square Error (RMSE), Akaike Information Criterion (AIC), and Moran’s I 

were used to access model fit for all models. RMSE measures the differences between predicted 

and observed values where values closer to zero represent better model fit (Stow et al., 2009). 

AIC is another method to test goodness of fit and model complexity with a model having smaller 

returned AIC value being the better model (Zuur et al., 2009). Moran’s I tests for spatial 

autocorrelation in residuals where a significant Moran’s I of -1 signifies perfect clustering of 

dissimilar values, a significant Moran’s I value of 0 signifies no autocorrelation, and a significant 

Moran’s I of +1 signifies perfect clustering of similar values. If values are found to be spatially 

autocorrelated, this is an issue as it violates the assumption of independence of data (Zuur et al., 

2009; Stephanie, 2016). Additionally, two-fold cross validation was performed by separating 

each of the 8 groups’ (2 season 𝗑  2 sexes 𝗑  2 sizes) data into random training and a testing 

subset to calibrate the model and validate its predictions (Li et al., 2018). The percentage of data 

allocated for the testing portion was determined by the equation 

1/(1 + √𝑃 − 1) 
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where P is the number of predictor variables (Franklin, 2010; Li et al., 2018). Cross validation 

allows visualization of model performance to examine if model predictions are on average, over 

or under predicting abundance compared to observed values. 100 iterations of cross validation 

were repeated for each model group and average performance was estimated. 

 

IV-3 Results 

IV-3-1 Model Performance and Validation 
 Significant variables differed between model types and between groups. Under the 

stationary model, only salinity was found to be non-significant in some groups, whereas both 

salinity and sediment size were found to be non-significant in some NSV1 model groups. 

Moreover, salinity, sediment, and distance from shore were found to be non-significant in some 

NSV2 model groups. Table IV-1 summarizes the non-significant variables which were not 

included in the final model for each group and spatial scale. The deviance explained for lobster 

abundance varied between 34.4 - 44.0% for each group of the stationary GAM, 36.2 - 52.5% for 

the average NSV1 group, and 40.9 - 63.2% for the average NSV2 group. Full deviance explained 

for each specific group can be found in Table 2.2. Likewise, the RMSE, AIC and Moran’s I tests 

showed similar trends in model fit, with the stationary GAM demonstrating the lowest model fit 

estimates, the NSV1 model demonstrating intermediate model fits, and the NSV2 model 

demonstrating the greatest model fits (Table IV-3).  
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Table IV-3: RMSE, Moran’s I, and AIC Values for Each Model and Group Type. “SG” = 

“Stationary GAM”. See Table 2.1 for group acronym explanation. RMSE values closer to zero 

represent better model fit. Moran’s I tests for spatial autocorrelation in residuals where 

significant values closer to 0 signifies no autocorrelation. All reported Moran’s I values were 

significant (p<0.05). Smallest AIC values also indicate a better model.  

Grou

p 

SG 

RMS

E 

NSV1 

RMS

E 

NSV2 

RMS

E 

SG 

Moran’

s I 

NSV1 

Moran’

s I 

NSV2 

Moran’

s I 

SG 

AIC 

Averag

e NSV1 

AIC 

Averag

e NSV2 

AIC 

FLFJ 1.67 1.53 1.44 0.51 0.42 0.16 9,009 4,341 2,757 

FLMJ 1.67 1.54 1.43 0.49 0.38 0.14 8,978 4,327 2,736 

FLFA 1.29 1.17 1.09 0.45 0.32 0.07 14,39

8 

7,064 4,585 

FLM

A 

1.24 1.12 1.06 0.43 0.30 0.07 14,42

8 

7,069 4,597 

SPFJ 1.68 1.57 1.51 0.51 0.41 0.17 10,25

6 

4,950 3,121 

SPMJ 1.67 1.58 1.52 0.46 0.37 0.15 10,01

1 

4,884 3,060 

SPFA 1.49 1.37 1.32 0.29 0.22 0.09 19,27

9 

9,548 6,087 

SPM

A 

1.41 1.32 1.28 0.28 0.22 0.09 19,12

4 

9,480 6,055 

 

 The two-fold cross validation results from 100 iterations revealed that the models had 

reasonable prediction skill, as the average between the 100 iterations was near the 1:1 prediction 

line for most groups and models. These tests revealed that most models tended to slightly 

underpredict abundance, with exception of the average spring female adult (SPFA) NSV1 model 

which revealed average slight overpredictions. NSV2 model cross validation results 

demonstrated more precision than NSV1 or stationary model results. Results from the two-fold 

cross validation can be found in the supplementary material section (Supplementary Figures A.3-

A.5 in Behan 2021). 

 

IV-3-2 Environmental and Spatial Variables 
 Environmental and spatial variables were also explored via GAM response curves for 

each significant predictor variable. Latitude and longitude variables were combined as an 

interaction term in each model to help account for spatial autocorrelation (Siegel and Volk, 

2019). Response curves varied greatly depending on independent variable, season, sex, size, and 
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spatial scale of the model. For bottom temperature, highest partial effect on abundance was seen 

between 6-10 ℃ in the spring and around 10-14 ℃ in the fall for stationary models, and between 

4-10 ℃ in the spring and 10-14 ℃ in the fall for nonstationary models. For bottom salinity, 

highest abundance was seen between 31-33 psu for both spring and fall across all models. The 

relationship spring male adult (SPMA), spring female juvenile (SPFJ), and spring male juvenile 

(SPMJ) groups had with salinity was unique, compared to other groups. These group’s response 

curves demonstrated a higher partial effect on abundance at salinity levels >32 psu in the west. 

This may help explain the distinctive relative difference trends generally observed in western 

GOM for the SPMA group. This difference did not seem to affect the spring juvenile groups, as 

juvenile lobsters tend to stay in more nearshore waters (Lawton and Lavalli, 1995), where 

FVCOM data has shown salinity levels are generally lower in western GOM. For distance 

offshore, highest partial effect on abundance was seen generally between 0.00-0.1 decimal 

degrees (≅0-6 nautical miles offshore), and then gradually declined with increasing distance 

from shore across most models. For sediment size, highest partial effect on abundance was seen 

between 2-6 phi (silt - medium grain sand) across most models. Some season, sex, and size 

group curves changed more in shape across spatial extents than others, but variation was 

apparent and supports evidence of spatial nonstationarity in this region.  

 Figure IV-3 depicts the response curves between lobster abundance and bottom 

temperature for spring male adults (Figure IV-3A & 3C) and fall female juveniles (Figure IV-3B 

& 3D). These figures show how the response curves change, depending on the spatial scale and 

location of the testing data. These figure panels also show where estimated relationship curves 

overlap, if at all. For example, in Figure IV-3C, one can see high overlap between most model 

response curves between 5-7 ℃. However, at temperatures greater than 7 ℃, the relationship 

curve for the stationary GAM more closely resembles that of the response curve for the eastern 

GOM than for the western or central GOM. This suggests that if a stationary model were used to 

represent spring male adult lobster data, it would better represent eastern GOM data than central 

or western GOM data in that temperature range, and in a climate warming scenario, would 

underestimate western GOM abundances. In a region which is expected to continue experiencing 

warming temperatures, the implications of subordinate model spatial scale selection may 

increase. Many lobster groupings (season 𝗑 sex 𝗑 size) tended to show similar patterns, where the 

stationary GAM response curve for a variable, more closely resembled the response curve of one 

localized region of the GOM more than the other regions. 
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Figure IV-3: A comparison of spring male adult (SPMA) and fall female juvenile (FLFJ) lobster 

GAM bottom temperature response curves to by spatial location in the GOM. Each plot shows 

the response curve of bottom temperature (℃) on the x-axis, against the partial effect of lobster 

density on the y-axis. Figure panels (A) and (C) compare response curves estimated for the 

stationary model and eastern and western NSV1 models, while figure panels (B) and (D) 

compare response curves estimated for the stationary model, and eastern, central, and western 

NSV2 models. Shaded regions on either side of the response curve line indicate the standard 

error confidence intervals. Rug plot lines along the x-axis of each plot indicate distribution of the 

bottom temperature data. 

 

IV-3-3 Model Prediction and Distribution Plots 
 Fall distribution plots showed greater abundance estimates than spring plots, which 

correlates with observations in raw trawl survey data. Raw fall trawl survey trends show slight 

declines in catch in regions 3 and 4 since 2015 and in region 5 since 2016 (Supplementary Figure 

A.1; Behan 2021), with trends of offshore catch increasing overtime. All three model estimates 

demonstrated offshore abundance estimates increasing from the 2012-2017 hindcasts, but only 

the NSV2 model showed indications of a slight decrease in eastern GOM abundance. Model 

estimates in central GOM were most distinctive between models. A trend emerged in all tested 

years which demonstrated that as model spatial scale became finer, clear “hot” and “cold” spots 

emerged within the Penobscot Bay area. The NSV2 model showed this pattern well, with a 
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“hotspot” emerging along the southwest mouth of Penobscot Bay, and a “coldspot” in the 

northeast Penobscot Bay region (Figures IV-4 – IV-7). These patterns correlate well with 

American lobster settlement patterns found in Steneck and Wilson (2001), as well as estimated 

spawning stock sizes in Chang et al. (2016). 

 

 
Figure IV-4: 2017 fall American lobster estimated spatial distribution. Legend colors increase in 

abundance estimates from pale yellow to dark red. Each column represents a season 𝗑 sex 𝗑 size 

group. Each row represents the model type used to generate the abundance estimations. Adult 

abundance legend corresponds with adult lobster group estimates. Juvenile abundance legend 

corresponds with juvenile lobster group estimates. 
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Figure IV-5: Forecasted fall American lobster estimated spatial distribution for the time period 

2028-2055. See Figure IV-4 for figure details. 

 
Figure IV-6: 2017 spring American lobster estimated spatial distribution. See Figure 2IV-4 for 

figure details. 
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Figure IV-7: Forecasted spring American lobster estimated spatial distribution for the time 

period 2028-2055. See Figure IV-4 for figure details. 

 

 The stationary GAM tended to comparatively overpredict the 2017 hindcast distributions 

in western GOM, apart from the SPMA group (Figure IV-8). In central GOM, the stationary 

models tended to comparatively underpredict in the western part of Penobscot Bay and 

overpredict in the eastern part of Penobscot Bay. This was evident in both NSV1 and NSV2 

relative difference model comparisons (Figure IV-8) across all years. In eastern GOM, many 

stationary models estimated less abundance approximately between -68.5° and -67.5° W, and 

higher abundance estimates between -67.5° and -67° W when compared to NSV1 models 

(Figures IV-8 and IV-9). These trends were present across all tested years. 

2028-2055. See Figure IV-6 for figure details. 
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Figure IV-8:  2017 American lobster relative differences in model abundance estimates. Legend 

numbers represent relative differences (%) between NSV1 or NSV2 models and the stationary 

GAM. Red legend colors indicate areas where the stationary GAM model is predicting higher 

lobster abundance than the model in comparison. Blue legend colors indicate areas where the 

stationary GAM model is predicting lower lobster abundance then the model in comparison. Pale 

yellow colors indicate similar abundance estimates between the stationary and nonstationary 

models. Each column represents a lobster season 𝗑 sex 𝗑 size group. Each row represents the 

season and model type compared to the corresponding stationary GAM. 
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Figure IV-9:  2012 American lobster relative differences in model abundance estimates. See 

Figure IV-8 for figure details. 

 

 Density distribution estimates for the 2028-2055 period from nonstationary and stationary 

models exemplify similar spatial patterns seen in the corresponding distributions from 2000 to 

2017. Some season 𝗑 sex 𝗑 size groups estimated abundances that extend further offshore than 

their hindcast counterparts (see Figures IV-4 – IV-7). Spring abundance estimates demonstrate 

an increase in central and eastern GOM from 2017 to 2028-2055, and this is more notable in the 

nonstationary models than the stationary ones (see Figures IV-6 & IV-7). These forecasted 

estimates correlate with raw spring bottom trawl survey data thus far for regions 3-5, which have 

all demonstrated general increasing average catch rates (number/tow) from 2000-2019 

(Supplementary Figure A.2 in Behan 2021). 

 In general, relative differences between stationary and NSV2 distributions resulted in 

larger differences when compared to the relative differences between stationary and NSV1 

distributions. This trend was apparent across all tested years. These observations correlate with 

observations in model fit, as the NSV2 model showed highest model fit, and the NSV1 models 

showing model fit more similar to that of the stationary models. Fall relative difference plots 

revealed that the stationary model was likely to estimate higher abundance in western GOM 

when compared to both the NSV1 and NSV2 models (Figure IV-10, IQR ≅ -36 to 0%). In the 

spring, the stationary model comparatively estimated lower abundance in western GOM for 

spring adult males in the 2028-2055 period (Figure IV-10, IQR ≅ -29 to 45%). For adult females 

in both fall and spring however, stationary models estimated higher abundance than either the 

NSV1 or NSV2 models in the west for the 2028-2055 period (Figure IV-10, IQR ≅ -62 to 16%). 

Forecasted stationary abundance plots estimated lower abundance in the western portion of 
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central GOM (≈-69.3 to -68.9° W) and estimated higher abundance in the eastern portion of 

central GOM (≈-68.9 to -68.1° W), when compared with distribution estimates derived from the 

NSV1 model (Figure IV-10). This trend was also apparent in NSV2 forecasted relative 

difference plots, but differences were slightly more polarized (IQR ≅ -66 to 29%). There were 

slightly patchy trends in relative differences amongst groups in eastern GOM for the 2028-2055 

forecasted period, where both higher and lower estimates were evident (Figure IV-10, IQR ≅  -

15 to 62% for models 1:2 comparison and IQR ≅  -31 to 28% for models 1:3 comparison). These 

patchy trends were also observed in the eastern GOM region for hindcast plots as well, and may 

be due to the higher degree of vertical mixing, due to strong tides and upwelling in the eastern 

GOM, compared to the more stratified waters of the western GOM (Brooks and Townsend, 

1989; Brooks, 1985; Townsend et al., 2015).  
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Figure IV-10:  Forecasted American lobster relative differences in model abundance estimates 

for the period 2028-2055. Legend numbers represent relative differences (%) between NSV1 or 

NSV2 models and the stationary GAM. Red legend colors indicate areas where the stationary 

GAM model is predicting higher lobster abundance than the model in comparison. Blue legend 

colors indicate areas where the stationary GAM model is predicting lower lobster abundance 

then the model in comparison. Pale yellow colors indicate similar abundance estimates between 

the stationary and nonstationary models. Each column represents a lobster season 𝗑 sex 𝗑 size 

group. Each row represents the season and model type compared to the corresponding stationary 

GAM. 

 

IV-4. Discussion 

 We developed a modeling approach to explore and demonstrate how estimates of 

season-, sex-, and size- specific American lobster spatial distribution and abundance would vary 

based on the spatial scale and extent of the area being modeled in the GOM. Validation tests run 

for each model type and season 𝗑 sex 𝗑 size group suggested reasonable predictive ability. 

Nonsignificant variables varied by model and spatial location. These results correspond with the 

notion that local patterns may get masked by global statistics, if stationary assumptions are made 

(Brunsdon et al., 1996; Windle et al., 2012). Stationary assumptions are likely to be violated in 

the GOM, where northeast to southwest gradients of temperature, salinity, and productivity have 

been observed (Lynch et al., 1997; Pettigrew et al., 1998; Chang et al., 2016), as well as spatial 

differences in American lobster stock-recruitment relationships (Chang et al., 2016), and 

spatially varying patterns in initial molt timing and suddenness (Staples et al., 2018). 

 A trend in model fit was observed in which as the spatial scale of models became more 

localized, model fit increased. The NSV2 model demonstrated the greatest model fit to the 
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bottom trawl survey data and showed the most correlation in abundance estimates with raw 

bottom trawl survey data, indicating greater distribution estimation capabilities. The NSV1 

model demonstrated the next highest model fit and estimation capabilities, while the stationary 

model demonstrated the lowest model fit to the data. We speculate that the NSV2 model shows 

the greatest model fit and potential predictive capabilities because of the modeling technique 

used on these data. By taking into consideration the oceanographic processes in the GOM to 

determine which localized areas are likely to be the most and least similar in relationships 

between American lobster abundance and environmental variables, the amount of data used for 

model estimation can be maximized, while limitations of stationary models over a large and 

biologically complex region can be minimized. Out of the nonstationary models, the results of 

the NSV2 model suggest an improvement upon the NSV1 model. Although these models are 

similar, the evidence of the NSV2 model being an improvement upon the NSV1 model suggests 

enough nonstationarity exists between central and eastern GOM to make the tripartite model 

subdivision worthwhile and that this technique may be more biologically reflective.  

 Spatial distribution estimates of the NSV2 model also seem to correlate well with raw 

bottom trawl survey data and past literature, especially in region three which has shown high 

increases in average catch over the course of the survey, and where localized “hot” and “cold” 

spots may be reflective of areas of high spawning stock size (Chang et al., 2016), or lobster 

settlement patterns observed in that region (Steneck and Wilson, 2001). Although lobster larvae 

were not included in this study, lobster spatial distributions are likely influenced and driven by 

settlement (Incze et al., 1997; Steneck & Wilson, 2001; Incze et al., 2010), and post-settlement 

natural mortality is considered low for American lobster (Incze et al., 1997; Palma et al., 1999; 

Steneck & Wilson, 2001). This may culture a scenario where areas of high lobster settlement 

lead to high lobster densities of larger carapace lengths (Steneck & Wilson, 2001). 

 Most lobster groups demonstrated similar spatial patterns or temporal trends in model 

results and analysis, with the frequent exception of spring male adult groups. We speculate the 

spring male adult lobster groups often did not respond in the same way due to differences in 

responses to both bottom temperature and bottom salinity. Although each group had more than 

one significant environmental variable across model techniques, bottom temperature was a 

significant variable in all models, and spring adult bottom temperature response curves were 

most distinct among groups. Most other season 𝗑 sex 𝗑 size groups displayed a relationship with 

bottom temperature similar to that of the FLFJ group (Figure IV-3D), where the partial effect of 

temperature on abundance generally increased then plateaus with increasing temperature. Spring 

adult lobster often did not follow this pattern, as exemplified in Figure IV-3C, where spring adult 

curves were typically domed-shaped. This dome-shaped pattern was present in both female and 

male spring adult groups however, so it is likely that other influences, such as salinity, may be a 

potential factor. The relationship spring adult males had with salinity was unique, compared to 

spring adult females, which demonstrated a similar pattern to the other season, sex, and size 

groups.  

 American lobsters are known to avoid areas of low salinity, and salinity preferences 

between 20-32 ppt have been recorded ((Jury et al. 1994; Tanaka and Chen, 2015). The spring 

adult male group response curve demonstrated a higher partial effect on abundance at salinity 

levels >32 psu in the west, which may explain why stationary models were more likely to 

comparatively underestimate lobster abundance in that region. Additionally, spring adult females 
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are known to have greater sensitivities to temperature and salinity, especially ovigerous females 

(Lawton and Lavalli, 1995; Cowan et al., 2007), which may explain why the adult male and 

female abundance estimates differ in the west. These differences may also be more apparent in 

the spring than in the fall because in the spring months when the ME-NH Inshore Bottom Trawl 

Survey data were collected, the western GOM water isn't as stratified as it is in the fall (Li et al., 

2018), allowing for less consistent environmental conditions, which may affect males and 

females differently. 

 The NSV2 model demonstrated the greatest relative differences across all years when 

comparing its spatial abundance predictions to those of the stationary GAM. This observation is 

the result of the multiple unique GAMs run on localized data, and thus assumptions of spatial 

nonstationarity are better satisfied. However, it is important to recognize that the largest 

difference from the stationary model does not automatically equate to the best model, as it is 

difficult to determine the starting biological accuracy of the stationary GAM. Estimates from the 

three modeling techniques at bottom trawl survey locations could be compared to raw bottom 

trawl data or other surveys, such as the Ventless Trap Survey, which may better capture areas 

where trawl surveys are unable to sample due to the satire of the gear. Comparing estimates from 

the modeling techniques utilized in this paper to raw data or other survey data at the same 

locations could be done to get a better understanding of how biologically accurate each technique 

is. However, between evidence of model fit and validation, distribution plot results, and 

correlation with raw survey data, we conclude that applying model techniques that better account 

for spatial nonstationarity will result in increased model performance. 

 While the NSV2 model demonstrated the best model fit out of the tested models, it is 

important to acknowledge some of the limitations of this model and the techniques used. First, 

all models tested only included environmental variables. No biological variables were included 

in the models, thus these models are working under the assumption that lobster abundance is 

dependent solely upon environmental variables and spatial scales used in the NSV1 and NSV2 

models. Future studies may benefit from including biological variables, such as predator and/or 

prey abundance, into the models to see how the results would differ. Secondly, the subdivision of 

data techniques used for the nonstationary models (NSV1 & NSV2) sometimes resulted in 

variegated or “patchwork” spatial distribution estimates. Such abrupt changes in abundance 

estimates along the model extent lines are not likely to be biologically representative of true 

American lobster spatial distributions in the GOM. Consequently, this nonstationary modeling 

approach should only be used to observe trends in spatial distribution estimates, and not for 

precise estimations of “true” abundance, especially near the model extent lines. Thirdly, future 

studies may also benefit from exploring how different ways of subdividing data can impact 

model results, and if model fit can be further improved with more data partitions. Lastly, this 

study only considers spatial nonstationarity in model development, as gradients in environmental 

conditions throughout the study area have been observed. We did not consider temporal 

nonstationarity in this study due to the relatively short time period of data available to this study. 

If longer-term projections were to be made, temporal nonstationarity may need to be considered. 

However, this is beyond the scope of this study. 

 This study indicates that SDM estimations are dependent upon spatial scale and 

assumptions of nonstationarity. Results from a model that implicitly assumes spatial stationarity 

would differ from results of a model that better accounts for spatial nonstationary processes. 
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Thus, using results generated by stationary models could lead to different, or potentially even ill-

informed management decisions which may result in less effective management results. 

Moreover, accounting for spatial nonstationary processes may be essential when devising 

localized regulations, as indications of change or unique dependencies of a species may be 

masked when using global statistics which are present in stationary models (Fotheringham et al., 

2002; Windle et al., 2012). Management decisions informed by stationary models could result in 

regulations being more effective in one local area and less in others, if the relationship curves 

that drive the predictions are more representative of a particular area of the study area, rather 

than well represented throughout. If the NSV2 model distribution estimates are more biologically 

realistic as the analyses suggest, then comparatively, under an RPC 8.5 “business as usual” 

climate scenario prediction for the years 2028-2055, stationary models could overestimate 

lobster abundances in western GOM, with the exception of spring adult males. In such case, it is 

important local heterogeneity is considered in  American lobster management in the GOM 

because false overestimations of abundance could lead to relaxed regulations or ill-informed 

biological reference point calculations, which could potentially lead to overfishing in western 

GOM. 

 Using stationary modeling techniques to forecast American lobster spatial distribution 

could result in inferior perceptions of where lobster populations will be spatially, and to what 

extent. More accurate predictions of American lobster spatial distributions will help stakeholders 

prepare and employ best practice measures to ensure the sustainability and longevity of the 

industry. 

 

 

Section V. Scale-dependent assumptions of nonstationarity influence habitat suitability 

estimates for the American lobster: implications for a changing Gulf of Maine 
 

V-1. Introduction 

 American lobsters are found in a variety of habitats, where the preference of these 

habitats has been thought to be influenced by environmental factors such as water temperature, 

salinity, substrate, and presence or absence of shelter. Previous literature has shown that 

American lobsters tend to exhibit a thermal preference between 12-18℃ (Crossin et al., 1998), 

and salinity preference between 20–32 ppt (Jury et al. 1994; Tanaka and Chen, 2015). Although 

their substrate preference has been known to vary between life stages, lobsters have been 

observed across a wide range of substrate types, including cobble, rock, mud, bedrock, sand, peat 

reefs, and eelgrass beds (Lawton & Lavalli, 1995). 

 Habitat Suitability Index (HSI) models, also known as Bioclimate, or Bioclimate 

Envelope models, are widely used to estimate and predict the habitat suitability for a species at a 

given location (Tanaka & Chen, 2015; Runnebaum et al., 2018; Torre et al., 2018; Tanaka et al., 

2019). There are many types of bioclimate model approaches, but the approach used in this study 

is the statistical bioclimate model (Heikkinen et al., 2006). HSI models are useful for evaluating 

the quality of habitat for a particular species, based on density observations and environmental 

conditions across a spatial extent of interest. Information generated by these models can be 

crucial to assessing how habitat quality is changing over space and/or time (Guan et al., 2017; 

Torre et al., 2018). HSI models estimate suitability indices (SIs) for each environmental variable 
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included in the model. These SIs represent a relationship between abundance and the selected 

environmental variable, and assume that observations of high density are indicative of high 

quality habitat conditions for that species (Runnebaum et al., 2018). 

 The bioclimate models used in this study were applied to the the Gulf of Maine (GOM) 

coastal region. The GOM is an inlet of the Atlantic Ocean that spans from Nova Scotia to 

Massachusetts, and is considered to be one of the most biologically productive marine 

ecosystems (Townsend, 1991), but a northeast to southwest productivity gradient has been 

observed in in the GOM (Chang et al., 2016). Gradients in temperature and salinity have also 

been observed (Pettigrew et al., 1998; Chang et al., 2016), and these variables are known to have 

significant influences on American lobster life history parameters (Lawton & Lavalli, 1995; 

Quinn & Rochette, 2015; ASMFC, 2020).  

 Evidence of environmental and ecological gradients throughout the GOM suggests the 

culturing of nonstationary species-environment relationships. Spatial nonstationarity can be 

defined as the presence of variation in relationships between independent and dependent 

variables across space (Windle et al., 2012). However, it is common for species-environmental 

models to assume spatial stationarity, which assumes relationships to be constant over space 

(Chang et al., 2016, Tanaka et al., 2019). Biases and model inaccuracies may arise when 

assuming spatial stationarity because the association between dependent and independent 

variables decreases with increasing distance (Brunsdon et al., 1996; Fotheringham et al., 2002). 

 Past literature has found evidence of spatial nonstationarity existing within the GOM (Li et al., 

2018. Staples et al., 2018). Although evidence of spatial nonstationarity exists within this region, 

previous literature has not explored how HSI model estimates could change, based on the spatial 

scale at which the model is run. This idea is called “the zoning effect” and occurs when statistical 

analysis results can differ based on how zones of an area of interest are defined and grouped 

(Fotheringham et al., 2002). We postulate that the zoning effect is likely to occur when analyzing 

species abundance data in the GOM due to the nonstationarity that has been observed in this 

region. Extrapolation and forecasting estimates onto unsampled areas and novel time periods are 

commonly desired when modeling habitat suitability. Previous literature has suggested that one 

way to achieve these desires while also including considerations of nonstationarity is to run 

multiple unique models at localized scales by partitioning the data (Fortheringham et al., 2002; 

Windle et al., 2009). 

 We explore the effects of spatial scale, and thus, varying assumptions of nonstationary, 

on lobster habitat suitability estimates and compare those results to those of coarse-scale models 

which assume spatial stationary. To do this, we developed season-, sex-, and size- specific 

models to estimate the habitat suitability of American lobsters using Bioclimate Envelope 

models of varying spatial scales and extents. Variation in estimated habitat suitability between 

models is evaluated and the implications for what these differences can mean in a region 

susceptible to climate change are discussed.  

 

V-2 Materials and Methods 

V-2-1 Study Area and Data Sources 

 American lobster abundance data were sourced from the Maine-New Hampshire Inshore 

Bottom Trawl Survey (Maine Department of Marine Resources (MEDMR) and the New 

Hampshire Fish and Game Department (NHFGD). 2000-2019. Inshore Bottom Trawl Survey. 
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Raw data). This survey is semiannual, with separate fall and spring seasonal surveys conducted 

each year. The bottom trawl survey spans 16000.5 km2 and is subdivided into five survey regions 

(Figure V-1; Sherman et al., 2005). These five regions include (1) New Hampshire and Southern 

Maine, (2) Mid-Coast Maine, (3) Penobscot Bay, (4) Mt. Desert Island, and (5) Downeast Maine 

(Figure V-1). The potential sampling area for this survey extends up to 22.22 km offshore 

(Figure V-1). Each survey aims to sample 115 stations, resulting in a sampling density of 

approximately 1 station for every 137.20 km2. The data included in this study was composed of 

random stations, which were chosen by dividing the survey area into a 1NM2 (3.43 km2) grid, 

and randomly chosen (Sherman et al., 2005). A target tow of 20 minutes is set at a speed of 2.2-

2.3 knots, which covers roughly 1.48 km. Data from 486,971 individual lobsters were included 

in this study, and all tow data were standardized to 20 minutes, allowing for consistency and 

compatibility amongst tows. Tow data were standardized by the following equation 

𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝑖20  =  
𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝑖𝑏 ∗  20

𝑡𝑖𝑚𝑒𝑖𝑏
 

where “Abundancei20” is the estimated lobster abundance for a 20 minute tow at location i, 

“Abundanceib” is the observed abundance at time b, and “timeib” is the number of minutes trawl 

b surveyed for. 

 

 
Figure V-1: Maine-New Hampshire Inshore Bottom Trawl Survey Past Tow Locations, 

Potential Surveyable Area, and Regional Boundaries. Missing white areas not included in the 
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potential survey area grid are non-surveyable locations due to the topography of the ocean floor 

at those locations. 

 

 The bottom trawl survey records biological and environmental data, such as species, sex, 

size, bottom water temperature, bottom water salinity, latitude, longitude, and depth data at each 

tow location (Sherman et al., 2005). Additional information about the Maine-New Hampshire 

Inshore Bottom Trawl survey procedures, protocols, or specifics can be found in Sherman et al. 

(2005). The ME-NH Inshore Bottom Trawl Survey has been found to render reliable and 

informative data for studying lobster habitat quality in the GOM (Tanaka et al., 2019; Hodgdon 

et al., 2020).  

 Bottom temperature, bottom salinity, latitude, and longitude information from the years 

2000-2019 were used from the bottom trawl survey to inform the Bioclimate models. Distance 

from shore and median sediment size variables were also estimated and utilized. The distance 

offshore for each tow of the bottom trawl survey was estimated as the distance between the 

midpoint latitude and longitude of a tow and the closest point on the coast. Sediment data were 

sourced from the East-coast Sediment Texture Database which is run by the United States 

Geological Survey (USGS, 2014). This survey was last updated in 2014 and contains 

information such as location, description, texture, and size (phi, -log of grain size) taken by 

different marine sampling programs across various locations around the world. Both mean and 

median sediment size values are supplied in this dataset, but median sediment size was used over 

mean sediment size, as the former is more robust to outliers (Tůmová et al., 2019). The median 

grain size at each survey location was estimated using thin plate splines. These data can be found 

at https://woodshole.er.usgs.gov/openfile/of2005-1001/htmldocs/datacatalog.htm and more 

information about the East Coast Sediment Texture Database can be found in U.S Geological 

Survey (2014). 

 Bioclimate models were built using bottom trawl survey data from years 2000-2019. 

However, to be able to interpolate onto unsampled areas and novel time periods that are not 

covered by the bottom trawl survey, additional bottom temperature and bottom salinity data were 

needed to create interpolated habitat suitability plots. Fine scale bottom temperature and bottom 

salinity data throughout the study area were obtained by spatially interpolating Finite-Volume 

Community Ocean Model (FVCOM) data. The FVCOM is an advanced ocean circulation model 

that uses an unstructured grid format, making it highly applicable for use in regions with 

complex coastlines and bathymetry (Chen et al., 2006; Li et al., 2017). The FVCOM was 

developed by University of Massachusetts Dartmouth and Woods Hole Oceanographic 

Institution. More information about the FVCOM can be found in Chen et al. (2006). 

Forecasted distributions were made for the period 2028-2055. The forecasted bottom temperature 

and bottom salinity data were sourced from the National Oceanic and Atmospheric 

Administration (NOAA) and represent an ensemble projection of all models used to create the 

Intergovernmental Panel on Climate Change’s (IPCC) Coupled Model Intercomparison Project 

Phase 5 (CMIP5) data (available from https://psl.noaa.gov/ipcc/ocn/). Data for the 

Representative Concentration Pathway (RPC) 8.5 “business as usual” scenario were used. These 

data are forecasted anomalies based on the reference time period 1956-2005 and are estimated 

for the period 2006-2055. These data are anomalies, and thus hindcasted bottom temperature and 

bottom salinity data must be used in tandem from the same reference period. The earliest 

https://woodshole.er.usgs.gov/openfile/of2005-1001/htmldocs/datacatalog.htm
https://woodshole.er.usgs.gov/openfile/of2005-1001/htmldocs/datacatalog.htm
https://psl.noaa.gov/ipcc/ocn/
https://psl.noaa.gov/ipcc/ocn/
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available FVCOM data begins in 1978 rather than 1956, limiting the available reference period 

in this study to 1978-2005. With the reference period reduced from 50 to 27 years, the CMIP5 

forecasting period must also be reduced respectively, from the initial 2006-2055 to 2028-2055 

for this study. The forecasting period 2028-2055 is used because it represents the maximum 

amount of FVCOM data than can be used while also confidently applying IPCC forecasted 

anomalies and keeping the same projection distance from the reference period. Delta 

downscaling methods were also applied so that forecasted anomalies could be applied to the 

same scale as the FVCOM data. Specifically, bivariate spline interpolation was applied using the 

package “akima” in R (Akima & Gebhardt, 2016). 

 

V-2-2 Model Development 

 Lobster data was divided into eight groups based on season (fall and spring), sex (female 

and male), and size (adult and juvenile; Li et al., 2018; Chang et al. 2016). Juvenile lobsters were 

distinguished as lobsters with carapace lengths <50mm due to differences in activity patterns 

(Lawton & Lavalli, 1995). Each of the eight groups were modeled independently under 3 

different techniques: (1) A coarse-scale Bioclimate Envelope model that assumes spatial 

stationary relationships between lobster abundance and environmental variables; (2) a meso-

scale Bioclimate Envelope model that assumes spatial nonstationary relationships between 

eastern and western GOM, and (3) a fine-scale Bioclimate Envelope model that assumes spatial 

nonstationary relationships between eastern, central, and western GOM. Partitioning of data for 

these models can be visualized in Figure V-2. 

 Previous literature in the GOM have estimated habitat suitability using the bioclimate 

envelope model at large spatial scales (Tanaka and Chen, 2015; Runnebaum et al., 2018). This 

traditionally applied technique is represented in this study by “Model 1”, which assumes spatial 

homogeneity and is applied at the largest spatial scale. This technique also assumes that 

nonlinear (but stationary) relationships between lobster abundance and environmental factors are 

sufficient to accurately predict the suitability of a potential or realized habitat location, in a 

region that is ecologically complex. Other literature has demonstrated the existence of variation 

in environment-abundance relationships across localized regions (Li et al., 2018; Liu et al., 

2019). To test the effects of these differences, the bisected (Model 2) and trisected (Model 3) 

models were constructed at increasingly finer spatial scales, respectively. The purpose of this 

study is to explore how habitat suitability predictions change under models with varying 

assumptions of nonstationarity (or lack thereof) in hindcasting and forecasting scenarios. 

The meso-scale model (Model 2) broke up the data into east and west zones. The western zone 

used data in regions one and two from the ME-NH bottom trawl survey (Figure V-2). Eastern 

GOM was represented by data from regions three, four, and five in the trawl survey (Figure V-

2). The decision to split the data up in this way was driven by the GOM coastal currents, which 

have been thought to be one of the factors that contributes to the spatial environmental gradients 

seen across the gulf (Lynch et al., 1997; Pettigrew et al., 1998; Chang et al., 2016) and the 

nonstationarity that has been observed in this region (Li et al., 2018).  Supporting literature that 

states the southern extent of the Eastern Maine Coastal Current (EMCC) includes the Penobscot 

Bay region (Xue et al., 2008; Chang et al., 2016), which is why in Model 2, region 3 of the trawl 

survey (Penobscot Bay) is included into the representation of the eastern GOM. 
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Figure V-2: Visual representation of each model approach utilized in this study. Each colored 

rectangle represents a separate bioclimate model that was run on the observed data points 

contained within those region(s) of the ME-NH Bottom Trawl Survey. Extents of the colored 

rectangles in this figure are not exact, but rather serve as general visualization of how the data 

were partitioned in this study. 

 

 Although some literature supports this decision, it is difficult to exactly pinpoint a fine 

line of where the EMCC bifurcates and the Western Maine Coastal Current (WMCC) begins. 

Some literature describes the EMCC diverging within the Penobscot Bay region (Pettigrew et al., 

2005) or that the location of the split can be variable, based on the distribution of Slope Water in 

the Jordan Basin (Brooks and Townsend, 1989; Brooks, 1985). Thus, another argument can be 

made in which the Penobscot Bay area (≅region 3 in the bottom trawl survey) could act as a 

potential buffer zone, in which this area of possible mixing between currents could warp clearer 

relationships that may be established if central GOM was represented by its own localized 

bioclimate model. One previous study has used a similar trisected approach to view relationships 

between initial intra-annual molts of American lobster and bottom temperatures in the GOM 

(Staples et al., 2018). Consequently, the NSV2 model is built in such way that regions one and 

two of the bottom trawl survey represent the western GOM, region three will have its own 

separate season-, sex-, and size- specific models built to represent central GOM (the buffer zone 

between the EMCC and WMCC), and regions four and five will represent eastern GOM.  Spatial 

coverage for each localized model can be visualized in Figure V-1. 
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 Prior to model construction, covariance matrices and variance inflation factor (VIF) tests 

were run to check for variable independence and multicollinearity. Running multiple covariance 

metrics showed a high dependence between distance from shore and average depth variables. 

Distance from shore was kept over average depth because distance from shore had a lower 

covariance value amongst the rest of the variables than average depth. Variance inflation factors 

quantify the multicollinearity amongst variables. Variables with VIF numbers >3 were excluded 

from the model (Zuur et al., 2009), supporting the decision to remove average depth as a variable 

when building the models. Additionally, latitude and longitude variables were highly correlated 

and resulted in VIF numbers >3, so latitude was chosen to be kept over longitude because 

latitude was more significant at predicting lobster abundance in this study region.  

 Significant variables for each localized model were chosen based on results from Section 

IV, where Generalized Additive Models (GAMs) were run on the same localized spatial areas 

and back-fitted to check for spatial variable significance. Only variables that were shown to be 

statistically significant (p<0.05) at each localized area were included in the respective bioclimate 

models (Chang et al., 2016). Latitude and bottom water temperature variables were included in 

every bioclimate model. Bottom salinity, distance from shore, and sediment size were included 

in some models, but not all, based on local significance. Variables included in each model are 

summarized in Table V-1. 
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Table V-1: Significant environmental variables included in each respective model in this study. 

All significant variables were assumed to have equal weights. Abbreviations for environmental 

variables are as follows: Temp = temperature, Sal = salinity, DFS = distance from shore, Sed = 

sediment grain size, Lat = latitude, and AS = all potential environmental variables were 

significant. 

Group Model 1 Model 2 

(East) 

Model 2 

(West) 

Model 3 

(East) 

Model 3 

(Middle) 

Model 3 

(West) 

FLFJ Temp, 

DFS, Sed, 

Lat 

Temp, DFS, 

Sed, Lat 

Temp, 

DFS, Sal, 

Lat 

Temp, DFS, 

Sed, Lat 

Salinity, DFS Temp, 

DFS, Sal, 

Lat 

FLMJ AS Temp, DFS, 

Sed, Lat 

Temp, 

DFS, Sal, 

Lat 

Temp, DFS, 

Sed, Lat 

Temp, DFS, 

Sed, Lat 

Temp, 

DFS, Sal, 

Lat 

FLFA Temp, 

DFS, Sed, 

Lat 

Temp, DFS, 

Sed, Lat 

Temp, 

DFS, Sal, 

Lat 

AS Salinity, DFS, 

Sediment 

Temp, 

DFS, Sal, 

Lat 

FML

A 

Temp, 

DFS, Sed, 

Lat 

AS Temp, 

DFS, Sal, 

Lat 

AS Temp, Sed, Lat Temp, 

DFS, Sal, 

Lat 

SPFJ AS AS AS AS Temp, DFS, 

Lat 

AS 

SPMJ AS AS Temp, 

DFS, Sal, 

Lat 

AS Temp, DFS, 

Lat 

Temp, 

DFS, Sal, 

Lat 

SPFA AS AS AS AS Temp, DFS, 

Lat 

AS 

SPMA AS AS AS AS Temp, Sed, Lat AS 

 

 Once significant variables were determined, a Bioclimate Envelope model was run on 

each spatial region outlined in Figure V-2. The Bioclimate Envelope model generates habitat 

suitability indices (HSIs) on  a scale from 0 (least suitable habitat) to 1 (most suitable habitat) 

based on suitability indices (SIs) of covariates thought to influence habitat quality and preference 

(Tanaka and Chen, 2015). The relationship between an environmental variable and lobster 

abundance is quantified by the SI, where then all SIs are combined to form the overall HSI for a 

specific location (Runnebaum et al., 2018).  SIs were determined via a technique known as the 

histogram method (Vinagre et al., 2006, Tanaka and Chen, 2015). To determine the optimum 

number of bins for the histograms, the Freedman-Diaconis rule (Freedman & Diaconis, 1981) 
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was applied to the region with the least amount of data (Model 3, central GOM region) and the 

resulting optimum number of bins, 14, was kept constant for all models. The Freedman-Diaconis 

rule finds the optimum bin width with the following equation: 

𝑏𝑖𝑛 𝑤𝑖𝑑𝑡ℎ =  2 ∗  𝐼𝑄𝑅 ∗  𝑛
−1/3

 

where “IQR” is the interquartile range and “n” is the number of observations. The optimum 

number of bins could then be determined by 

(𝑚𝑎𝑥 − 𝑚𝑖𝑛)/𝑏𝑖𝑛 𝑤𝑖𝑑𝑡ℎ 

where “max” is the maximum value in the dataset and “min” is the minimum value in the dataset 

(Freedman & Diaconis, 1981). The Freedman-Diaconis rule was only used to find the optimum 

number of bins to use for the histogram method and Fisher’s natural breaks classification method 

was used to distinguish bin extents (Bivand, 2019; Tanaka and Chen, 2015). Once SIs were 

estimated for each variable and for each lobster group, SIs of significant variables for each 

respective lobster group were combined to form and overall HSI, which ranged from 0-1. We 

used the arithmetic mean model (AMM, Tanaka and Chen, 2015), which can be written as 

𝐻𝑆𝐼 =  ∑

𝑉

𝑣=1

𝑆𝐼𝑣

𝑉
 

where SIv is the SI of environmental variable v and V is the total number of environmental 

variables. Thus, all variables had equal weighting as was done in Tanaka and Chen (2015) and 

Runnebaum et al. (2018).  

 

V-2-3 Habitat Suitability Index and Relative Difference Plots 

 Hindcasted distribution plots were created for each of the 8 lobster groups and for each 

model for the years 2000, 2006, 2012, and 2017 for a total of 98 plots. Although there are bottom 

trawl survey data available from 2000-2019, the environmental (FVCOM) data used to be able to 

spatially interpolate plots is only available until 2017, limiting the most recent available 

hindcasting year that can be spatially interpolated to 2017. Additionally, these specific years 

were chosen because they are approximately evenly spaced throughout the hindcast period of 

interest, albeit these methods could be applied to any year(s) between 2000 and 2017. Forecast 

distribution plots were also estimated for each of the 8 lobster groups and model for the 2028-

2055 year period, for a total of 24 forecast distribution plots. Differences between model 1 and 

models 2 or 3 were determined by calculating relative differences between habitat suitability 

estimates. Relative differences were estimated using the equation 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝑖)  =  
𝑁𝑆 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐻𝑆𝐼 (𝑖) − 𝑆 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐻𝑆𝐼 (𝑖)

𝑆 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐻𝑆𝐼 (𝑖)
∗ 100 

where i is a location within the study area, “S estimated HSI (i)” is the estimated lobster habitat 

quality from Model 1, and “NS estimated HSI (i)” is the estimated lobster habitat quality from 

either the Model 2 or Model 3. Relative difference plots were generated for each lobster group, 

model and for the same years as the hindcast and forecast distribution plots. These plots 

demonstrate the magnitude and location of where Model 1, the traditional approach, tends to 

either over or under predict abundances in relation to the other approaches (Models 2 or 3). All 

distribution and relative difference plots were interpolated using bivariate splines using the 

package “akima” in R in order to achieve high resolution smooth distributions (Akima and 

Gebhardt, 2016). 
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V-3, Results 

V-3-1 Suitability Indices 

 Estimated suitability indices varied between lobster groups and between spatial scales. 

The environmental variable bottom temperature was significant in all models and has been 

known to be an important habitat indicator for lobster in the GOM (Boudreau et al., 2015; 

Tanaka et al., 2019). The shape of the temperature SI curves for both seasons and for all models 

generally followed a positive increasing pattern with increasing bottom temperature values, 

followed by a decrease in suitability at higher temperatures for each season. Estimated SI curves 

for fall female juvenile and spring male adult groups can be seen in Figure V-3. Latitude was 

also significant in every model. Model 1 and Models 3 (east and central) latitude SI curves were 

similar in shape, with a gradual increase with increasing latitude, followed by slight decrease. 

Western region SI curves for latitude all tended to slowly increase overtime, while Model 2 east 

curves showed either a quick increase in SI followed by a long and gradual decline (adults), or a 

consistently decreasing SI with increasing latitude (juveniles). Other environmental variables 

such as salinity, distance offshore, and sediment were not all significant across all models, but 

for those that were and included in the model development, estimated SI curves still showed 

similar pattern where the SI curve estimated for model one tended to more closely resemble the 

SI curve of a specific region in the GOM, and less of the others. 

 
Figure V-3: Fall female juvenile (FLFJ, figure panel A) and spring male adult (SPMA, figure 

panel B) bottom temperature suitability index (SI) curves for each model and region tested in this 

study. Y axes are SI estimates, ranging from 0.0 (poor habitat quality) to 1.0 (best habitat 

quality). X axes are bottom temperatures in degrees Celsius. Each x axis point for each curve is 

the midpoint of each of the 14 bins using Fisher’s Natural Breaks methods. Gray horizontal 

dashed line at 0.8 SI distinguishes suitable thermal ranges. 

 

V-3-2. Habitat Suitability Index Plots 
 Results derived from the AMM-HSI models were plotted for the hindcast years of 2000, 

2006, 2012, and 2017, and for the forecast period of 2028-2055. All models (1-3) generally 

estimated high suitability of habitat in coastal eastern GOM, where adult and fall groups showed 

higher suitability estimates slightly father offshore than their juvenile or spring group 

counterparts. See 2017 estimates in Figures V-4 and V-5 as examples. A trend was also observed 
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in all hindcast years where higher HSIs were estimated in the east in fall models that were 

applied at smaller spatial scales ( i.e. models 2 and 3) than for the fall model at the largest spatial 

scale, model 1 (Figure V-4). 

 
Figure V-4: Comparison of 2017 fall American lobster habitat suitability index (HSI) model 

estimates. Red indicates estimated areas of poor habitat while blue indicates estimated areas of 

suitable habitat. Each row represents estimates from a different model: model 1, 2, or 3, 

respectively. Each column represents specific estimates for different sex- and size lobster groups. 
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Figure V-5: Comparison of 2017 spring American lobster habitat suitability index (HSI) model 

estimates. See Figure V-4 for figure details. 

 

In the central GOM region, comparative HSI plots demonstrate that fall plots for model 3 tended 

to estimate a “hot spot” of suitable habitat (HSI >0.9) around the Owl’s Head to Tenants Harbor 

coastal regions of central GOM. Model 3 estimates higher HSIs in this area than any other 

model. Model 1 estimated higher values in fall juvenile groups for some years during the 

hindcast period, while model 2 estimated higher HSI values in fall adult groups for some years of 

the hindcast period as well; but model 3 estimated higher values for all sex-, and size- fall lobster 

groups, and for almost all hindcast years. 2017 fall hindcast HSI model comparison estimates 

exemplify this and can be seen in Figure V-4. There was a similar trend in finer-scale models 

estimating higher HSI in this region in the spring as well, but to a lesser extent. 

 Models 2 and 3 in the fall better showcase the known “cold spot” seen in the inshore 

Penobscot Bay or Sears Island region (Figure V-4), an area where poor lobster settlement has 

been observed (Steneck and Wilson, 2001) and is also likely associated with poor habitat 

suitability. Specifically, model 3 estimated HSIs as low as 0.2 in the 2006 and 2012 hindcasts, 

model 2 estimated this same area at an HSI of around 0.3 or higher, and model 1, estimated HSIs 

of at least 0.6 or higher for almost all hindcasted years. This supports evidence that model 

localization may better reflect biological realism. In the spring, results showed that model three 

also predicted lower HSI values in the inner Penobscot Bay region, and highlighted the “cold 

spot” more than models 1 or 2 did, although estimated suitability were overall higher than they 

were for the fall. 

 Comparison of HSI distribution plots, show that by comparing the most recent hindcast 

plots (2017) to the forecast estimates, the proportion of suitable habitat in the fall that is ≥0.6 has 

declined in farther offshore waters from 2017 to the 2028-2055 period (Figures V-4 and V-6). 
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This observation was more prominent in eastern GOM than for western. Conversely, in the 

spring, the proportion of suitable habitat that is ≥0.6 had increased in more offshore waters from 

2017 to 2028-2055 (Figures V-5 and V-7). Similar to the trends observed in the hindcast plots, 

fall forecast model 3 plots estimated higher HSIs around the Owl’s Head to Tenants Harbor 

coastal regions of central GOM, with exception to the fall male adults (FLMA) group. Fall 

forecast model 3 plots also estimate low HSIs in the Sears Island region compared to models 1 or 

2, with an exception to the FLFA group. Spring forecast model 3 plots also show these 

distinctions around Sears Island and Tenants Harbor, but the common settlement “hot spot” that 

was observed around the Owl’s Head to Tenants Harbor coastal regions appears to have moved 

further offshore and to the east (Figure V-7).  

 

 
Figure V-6: Comparison of 2028-2055 fall American lobster habitat suitability index (HSI) 

model estimates. Red indicates estimated areas of poor habitat while blue indicates estimated 

areas of suitable habitat. Each row represents estimates from a different model: model 1, 2, or 3, 

respectively. Each column represents specific estimates for different sex- and size lobster groups. 
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Figure V-7: Comparison of 2028-2055 spring American lobster habitat suitability index (HSI) 

model estimates. See Figure V-6 for figure details. 

 

3.3.3 Relative Difference HSI Plots 
 Relative differences were estimated between models 1 and 2, as well as between models 

1 and 3. Hindcast relative difference plots in the fall show that model 1 tends to estimate HSI 

higher than model 2 does, throughout the GOM in fall juveniles, as well as in spring juveniles, 

but to a lesser extent. In fall and spring juvenile relative difference plots for almost all hindcast 

years (2000-2017), there is some evidence of model 2 estimating higher habitat suitability in 

waters farther offshore than model 1 did in western GOM. This could be a sign that the finer 

scale model (model 2), is suggesting that suitable habitat for juvenile lobster is not limited to the 

most inshore regions of western GOM. This also supports observations that lobsters have been 

moving towards farther offshore waters than in previous decades (AMFSC, 2020; Tanaka et al., 

2020). For adults, model 2 estimated higher or similar HSIs in western GOM, especially in fall 

male adult (FLMA) groups in 2017 (Figure V-8). Similar to juveniles, model 2 adult estimations 

were lower in eastern GOM when compared to model 1 estimations in the same region, but these 

differences occurred in waters further offshore, while model 2 estimated higher suitability in 

more nearshore waters when compared to model 1 HSI estimates in eastern GOM. This was 

especially true for the FLMA group in eastern GOM in 2017 (Figure V-8). 
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Figure V-8: American lobster relative differences in 2017 model HSI estimates. Legend 

numbers represent relative differences (%) between models 2 or 3 and model 1. Red legend 

colors indicate areas where the finer scale model (2 or 3) is estimating a lower HSI than model 1 

did for that same area. Blue legend colors indicate areas where the finer scale model (2 or 3) 

estimated greater HSI values than model 1 did for that same area. Pale yellow colors indicate 

similar HSI estimates between the stationary and nonstationary models. Each column represents 

a lobster sex 𝗑 size group. Each row represents the season and which models are being compared. 

 

 In relative difference plots for the forecast period 2028-2055, many of the same trends 

persisted from the hindcast period to the forecast period. For both seasons, juvenile relative 

difference plots revealed that both models 2 and 3 (Figure V-9) tended to estimate lower HSIs 

than their model 1 counterparts throughout the majority of the GOM (IQR ≅ -28 to 1%). This 

can be seen by the overwhelmingly higher proportion of red, orange, and yellow colors in these 

plots, which designate that the finer scale models (2 or 3) had a lower estimated HSI at a specific 

location than model 1 did. In adult groups, there was more of an even spread of relative 

underestimation and overestimation by model 1, where in fall adult groups, models 2 and 3 both 

estimated greater HSIs in coastal inshore eastern GOM and farther offshore western GOM 

waters, and estimated lower HSIs in farther offshore central and eastern waters and coastal 

western GOM. In the spring, there weren’t as large of relative differences between adult groups 

in models 1 and 2 (Figure V-10), but there were greater relative differences highlighted in the 

central GOM region, where model 3 estimated lower HSIs in the inner Penobscot Bay region 

(Sears Island) and where model 3 estimated higher HSIs in more offshore waters in central GOM 

(Figure V-9, IQR ≅ -28 to 10%). 
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Figure V-9: American lobster relative differences in 2028-2055 model HSI estimates. See 

Figure V-4 for figure details. 

 

V-4 Discussion 

 This study developed a modeling approach to explore the possible impacts of ignoring 

spatial heterogeneity of species-environment relationships in habitat suitability index models 

across a environmentally and ecologically complex area, the GOM. Final HSI estimates yielded 

from the Bioclimate model ultimately depend on the combination of estimated shape of the SI 

curves between lobster abundance and environmental variables. From these SI curves, many 

factors such as the proportion, range, and magnitude of suitable habitat have the potential to vary 

based on inclusion, exclusion, or partitioning of data in the model. The shape and suitable range 

for environmental variable SI curves exhibited variation across different localized scales. This 

suggests that if a bioclimate model were applied to an environmentally and ecologically complex 

area at coarse spatial scale, then the results may more accurately represent one localized region 

of the entire study area, rather than well representing all spatial areas throughout the extent of the 

area of interest. We speculate that one reason for these observations is that the coarse scale 

model could have a tendency to favor regions with higher variance in its data when estimating 

relationships between habitat suitability and environmental conditions. This further highlights 

the importance of considering spatial scale in model development so that the “masking effect” 

(Brunsdon et al., 1996; Windle et al., 2012) commonly observed in stationary models and global 

statistics can be limited, and that localized differences can be better captured. 

 Spring forecast models demonstrated a easterly shift in the estimated “hot spot” location, 

when compared to hindcast estimates around the same location. This shift in “hot spot” location 

is unique to spring model 3 forecasts and could be a result of this model better detecting 

northeast and offshore temporal shifts that have been thought to be occurring and are thought to 
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continue to occur into the future (Goode et al., 2019; Mazur et al., 2020). Although there are no 

explicit temporal variables included in the development of any models tested in this study, 

accounting for assumptions of nonstationarity have been thought to account for spatial and 

temporal dependencies that cannot be explained by environmental variables alone (Bakka et al., 

2016). 

 Results from the relative difference plots between model 1 and model 2 or 3 highlighted 

the effects that assumptions of spatial scale have on model results. Some of the clearest patterns 

in spatial differences occurred in the central GOM region. We speculate the most prominent 

differences between models could be seen in this region because in model 3, central GOM had 

its own unique model ran on this area and therefore had the most potential to pick up on 

localized patterns. The model 3 central GOM region was the smallest scale model in this study 

and thus, localized patterns are more likely to be emphasized because spatially irrelevant (or less 

relevant) data are not included in the model, and thus only the most spatially relevant data can 

influence relationships in that area. The relative differences between models 1 and 3 generally 

followed many of the same patterns of relative differences observed between models 1 and 2, but 

were typically more extreme. We speculate this is the result of the differences in spatial scales 

between models 2 and 3, where assumptions of spatial nonstationarity in model 3 are better 

satisfied and thus more distinct from model 1’s assumptions of stationarity.  

 It is important to recognize that larger differences from model 1 do not automatically 

mean that model 3 is the most biologically realistic model, as it is difficult to determine the 

starting biological accuracy of model 1. Determining the amount of biological realism a 

bioclimate model captures is particularly challenging as there are no raw data for lobster habitat 

suitability available, and thus estimates of HSI cannot be compared to any observed estimates. 

However, model 3 results of this study correlate well with findings from Chapter 2, and Steneck 

and Wilson (2001), especially in the central GOM region, which suggests strong model fit and 

biological realism. 

 In bioclimate models, areas of “good” habitat are assumed to correlate with areas where 

high abundance have been observed, and vice versa with areas of “poor” habitat. Biases can arise 

in conjunction of this assumption because lobsters tend to prefer rocky, cobble, or boulder 

habitat, with plentiful locations to hide or take shelter (Lawton and Lavalli, 1995). These optimal 

shelter locations may not always be included in trawl surveys because trawls cannot be swept 

over areas with complex bottom topography, or other obstructions, such as areas densely fished 

with lobster traps. It has also been thought that as a species density increases, the spatial 

distribution of that species will also expand (Brown, 1984; Petitgas, 1998; Anderson and 

Gregory; 2000). This may lead to situations where individuals occupy a less suitable habitat 

because locations with the most suitable habitat are already occupied. American lobster stocks 

have increased fivefold since the 1980s (Goode et al., 2019), and densely populated areas could 

become less suitable as competition or susceptibility of disease increase. Effects of density-

dependent habitat selection could ultimately lead to differences between fundamental and 

realized niches, and thus HSI model estimates. A limitation of this study is that it only considers 

environmental variables as covariates. Future studies may benefit from the inclusion of 

biological covariates such as lobster density, or predator and prey densities. Future studies 

should also explore how HSI estimates change using non-trawl data, such as scuba surveys or 

traps, which might better survey sheltered habitat locations.  
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 In this study, all covariates are assumed to have equal influence on habitat suitability, 

which is not likely to be a biologically reflective assumption. Although this study only 

considered statistically significant environmental covariates unique to each local model (Table 

1), the influence of each significant covariate is not likely equal and future studies may benefit 

from incorporating weighted covariates in tandem with nonstationarity studies. The smallest 

spatial scale explored in this study was approximately 986 miles2 (2554 km2; Sherman et al., 

2005). Future studies may also benefit from exploring how different methodologies of data 

partitioning can impact model results, or if model fit can be further improved at smaller spatial 

scales. Other limitations of this study include the variegated or “patchwork” results observed in 

models 2 and 3. Such abrupt changes in HSI estimates along the model edge lines are not likely 

to be biologically representative of true habitat suitability throughout the GOM. Consequently, 

these nonstationary modeling approaches should only be used to observe trends in HSI estimates, 

and not for precise estimations of “true” habitat suitability, especially near the model edge lines. 

Lastly, temporal nonstationarity was not considered in this study as the focus of this study was to 

explore the effects of spatial nonstationarity due to the evidence that has been observed in past 

studies (Li et al., 2018). In regard to exploring temporal nonstationarity, due to the relatively 

short time period of data available to this study, we made the assumption that temporal 

stationarity is present, but if longer-term projections were to be made, temporal nonstationarity 

would likely need to be considered. However, this is beyond the scope of this study. 

 This study indicates that estimates of lobster habitat suitability are dependent upon spatial 

scale and assumptions of nonstationarity. Results from a model that implicitly assumes spatial 

stationarity would differ from results of a model that better accounts for spatial heterogeneity. 

Thus, using results generated by stationary models could lead to different, or potentially even ill-

informed management decisions which may result in less effective management results. 

Moreover, accounting for spatial nonstationary processes may be essential when devising 

localized regulations, as indications of change or unique dependencies of a species may be 

masked when using global statistics. Management decisions informed by coarse-scale models 

could result in regulations being more effective in one local area and less in others, if the 

relationship curves that drive the estimates are more representative of a particular area of the 

study area, rather than well represented throughout. If model 3 HSI estimates are more 

biologically realistic as the correlation with past literature suggests, then comparatively, under an 

RPC 8.5 “business as usual” climate scenario prediction for the 2028-2055 forecast time period, 

traditionally utilized stationary models could overestimate juvenile lobster habitat suitability. 

This could result in a false security of recruitment expectations in future years, as the suitability 

of habitat would likely be lower than a coarse-scale model would predict. For adult lobsters, 

coarse-scale models are likely to comparatively overestimate habitat suitability in western GOM 

nearshore waters and further offshore waters of eastern GOM, while also underestimating further 

offshore waters in western GOM and coastal waters of eastern GOM.  

 In light of these differences, it is important to consider the possibility of local 

heterogeneity in American lobster habitat modeling and management in the GOM. False 

overestimations of habitat suitability could lead to false perceptions of the current and future 

state and location of lobster stock. Such false perceptions could result in relaxed regulations or 

ill-informed biological reference point calculations, which could potentially lead to overfishing 

and potential population decline at some localized areas, or underfishing at other localized areas, 
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which could result in economic loss. Quality lobster habitat suitability estimates will help 

stakeholders prepare and employ best practice measures to ensure the sustainability and 

longevity of the lobstering industry as we enter a new climate regime, and smaller-scale models 

may better capture these localized changes. 
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Summary 

 

 This project examines two major conservation measures used in the American lobster 

(Homarus americanus) fishery in a changing Gulf of Maine (GOM).  We used computer simulation 

approach with simulation scenarios informed by stakeholders. The two conservations evaluated in this 

project include V-notching and minimum/maximum legal sizes, both of which are intended to ensure 

the sufficient spawning stock abundance to support sustainable fisheries and have been hypothesized 

to have contributed to the dramatic increase in lobster landings and stock biomass since the 1990s in 

the GOM. Based on semi-structured and oral history interviews, v-notching compliance and lobster 

fishers’ perceptions of v-notching were analyzed. All lobster fishers interviewed described v-notching 

as important for the lobster fishery’s sustainability, while also reporting that the v-notching practice 

has been declining in recent years. An individual-based lobster simulator (IBLS), which can capture 

complex processes with a flexible probabilistic approach, was modified, conditioned, and applied to 

the fishery. To evaluate the impact of v-notching, scenarios examining different v-notching 

compliance rates and v-notch definitions were simulated using the IBLS with different recruitment 

dynamics scenarios. These simulation results suggest that the lobster fishery would not have 

experienced the observed large positive increases in biomass and landings without a high v-notching 

compliance rate (i.e. 90 or 100% compliance) or a strict definition of the notch. Although v-notching 

has contributed to the increases in the fishery and population, to fully understand the role of 

conservation, the stock-recruitment relationship (SRR) in a changing GOM needs to be better 

understood. Projections of the lobster fishery under different v-notching scenarios show that in the 

near future, although v-notching does not increase landings, v-notching still preserves the spawning 

stock. Minimum and maximum legal sizes also made a great contribution to the dramatic 

increase of the GOM lobster fishery. An increase of 2 mm carapace length in minimum legal size 

with no changes in maximum legal size would result in a 279.92% increase in landings compared 

with the reference landings in 2013. These results show that the v-notching conservation measure and 

legal sizes are valuable tool for precautionary management. Overall, these results suggest that input 

controls, such as protecting the spawning stock and legal sizes, can provide benefits to both the fish 

population and fishery. The implications of a decline in the v-notching practice and weak enforcement 

of legal sizes may have negative impacts for the future sustainability of the fishery if the spawning 

stock and productivity were to decline. The simulation framework proposed in this study can be used 

to evaluate future dynamics of the lobster stock and fishery under different management regulations in 

a changing GOM.  
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I. Project Introduction 

 

The American lobster, Homarus americanus, supports one of the most valuable commercial 

fisheries in the northeast United States (ASMFC 2020). Most landings have occurred in the state of 

Maine. The Maine landings have increased steadily since the early 1970s and fishing effort is intense 

(Chen et al. 2005, ASMFC 2020). The American lobster fishery is currently managed by NOAA 

National Marine Fisheries Service (State, Federal and Constituent Programs Office) in federal waters 

under the Atlantic Coastal Fisheries Cooperative Management Act; but is managed under the Atlantic 

States Marine Fisheries Commission (ASMFC) Interstate Fishery Management Plan in state waters 

where most landings occur (ASMFC 2009). The management regulations control lobster fishing effort 

with trap limits. The American lobster in the northern USA is currently divided into two stocks in the 

most recent assessment (ASMFC 2020): Gulf of Maine (GOM)/ Georges Bank (GBK) and Southern 

New England. For the GOM/GBK stock, conservation measures such as minimum legal size, 

maximum legal size, V-notching egg-bearing lobster, and no taking of egg-bearing and V-notched 

lobster form the backbone of management systems.   

 Minimum legal size is commonly used in fisheries management for allowing individuals to 

spawn at least once in their lifespan; while maximum legal size is often used for protecting large 

spawners who tend to be more fecund and produce higher quality of eggs compared to small 

spawners. Legal size regulations were used more than century ago in the Maine lobster fishery. The 

minimum legal size was set at 266.7 mm (10.5 inch) total length in 1874; 88.9 mm (3.5 inch) carapace 

length (CL) in 1919; 77.8 mm (3-1/16 inch) CL 1933; and 82.6 mm (3-1/4 inch) CL since 1989. The 

maximum legal size was set at 120.7 mm (4.75 inch) CL in 1933, and 127 mm (5 inch) CL since 1960 

(ASMFC 2000).  

 Protection of egg-bearing lobster has a long history in the state of Maine. Egg-bearing female 

lobster were prohibited from being landed since 1872. Since 1947, an industry-initiated V-notching 

program has been widely used in the state of Maine to protect broodstock. Current Maine Law (Title 

12, Section 6436, Rule 25.15) states: “A female lobster marked with a v-notch in the right flipper next 

to the middle flipper is illegal to possess” and “It is illegal to possess a female lobster mutilated in a 

manner which could hide or obliterate a v-notch, including that missing flipper”. Because the V-

notching mark may become invisible after one or two molts, compared to the discard of egg-bearing 

lobster alone, this further extends the lobster broodstock protection.    

 Despite of high fishing pressure and landings, the GOM lobster population has increased 

dramatically since the early 1990s (ASMFC 2000, 2009, 2015, 2020). Various hypotheses have been 

developed to explain such an increase in the GOM lobster population and fishery landings, ranging 

from reduced biomass of major predators (e.g., Atlantic cod; Crooks and Soule 1999; Hanson and 

Lanteigne 2000), warming ocean temperatures (Spees et al. 2002), increased herring bait discards in 

the lobster fishery (Grabowski et al.2010), improved habitat (Tanaka and Chen 2016), and fluctuations 

in lobster larval supply in the GOM (Steneck and Wilson 2001). Conservation measures such as 

minimum legal size, maximum legal size, V-notching lobster program and protection of egg-bearing 

lobster are also considered to play an important role in large increases in the GOM lobster population 

size and landings under high fishing pressure; but no systematic study had been done to evaluate and 

quantify their contributions to the improved lobster stock and landings and no peer-reviewed 

publications were found. Thus, our understanding of the effectiveness of these conservation measures 

was limited, which raised some concerns from stakeholders regarding the necessity of implementing 

these measures in the lobster fishery managements. Given the perceived climate-induced changes in 

the ecosystem which may greatly influence the lobster recruitment and growth dynamics (ASMFC 

2020, Tanaka and Chen 2016, McMahan et al. 2016), such research becomes even more urgent and 
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necessary for a careful evaluation of effectiveness of the conservation measures in regulating the 

lobster population dynamics in a changing GOM. 

The objective of this study is to evaluate the role of conservation measures used in the 

management of Maine lobster fishery (GOM/GBK) such as minimum legal size, maximum legal size, 

and v-notching practice in regulating the lobster population dynamics in a changing GOM. This work 

addresses component E: Integration, as this work integrates both assessment and fishery components.  

This report includes three sections: Section II is to condition an individual-based lobster 

simulator for the use in evaluating impacts of conservation measures on the lobster stock dynamics; 

Section III is to evaluate the impacts of V-notching; and Section IV is to evaluate the impacts of 

maximum and minimum legal sizes. The sections II and III are part of PhD dissertation of Dr. 

Mackenzie Mazur (Mazur 2020) and section IV is part of PhD dissertation of Dr. Bai Li (Li 2018). 

Relevant peer-reviewed publications include Mazur et al. (2019a, 2019b).  

 

 

II. Conditioning an individual-based model to simulate the lobster fishery for the study 

 

II-1. Introduction 

Identifying a simulation tool for the complex American lobster fishery, in which fishery and 

life history processes vary among individuals, is necessary for the evaluation of conservation 

measures. The complexity of American lobster biological and fisheries processes makes the use of 

traditional mathematical formulation-based models difficult (ASMFC 2000). Growth of the American 

lobster is not continuous, as lobsters grow by molting, which mainly occurs in summer and fall (Factor 

1995). Molting frequency is dependent on the size and maturation status of the lobster (Factor 1995; 

Comeau and Fernand 2001).  

Additionally, conservation measures used in the GOM fishery, including minimum and 

maximum legal sizes, prohibition of the taking of egg-bearing lobsters, and protection of ovigerous 

females through a v-notching program, are difficult to consider as separate processes with traditional 

fishery models (ASMFC 2000). Consideration of all these fishery processes as separate from one 

another is important when evaluating changes in one process but not the others. For example, fishery 

conservation processes need to be considered as separate to evaluate the effect of minimum size but 

not maximum size and protection of egg-bearing lobsters. 

An individual-based model (IBM) may be an alternative modeling approach used to develop a 

fishery simulator because it can track the detailed life history and fishery processes of individual 

lobsters. IBMs describe a population consisting of different individuals and changes in the number of 

individuals (instead of population density) and consider the population dynamics under complex 

processes (Uchmański and Grimm 1996). With a probabilistic approach, IBMs allow for much more 

complexity than traditional mathematical-formulation-based models (Uchmański and Grimm 1996). 

When mathematical methods are used to model complex processes, unrealistic assumptions are often 

introduced to attain mathematical solutions, whereas IBMs can assume individuals are different from 

one another (Grimm 1999; Judson 1994). In addition to the incorporation of variability among 

individuals, IBMs can simulate life cycles of individuals that are not usually included in analytical 

models. 

In this project, we modified, parameterized, and tuned an individual-based lobster simulator 

(IBLS), which is an IBM for a lobster fishery, to simulate the historical GOM lobster fishery. This 

study includes (i) the description and parameterization of the IBLS that mimics the dynamics of the 

life history and fishery processes of individual lobsters; (ii) calibration of the IBLS, using coefficients 
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for specific parameters to predict historical landings and population size composition of lobsters; and 

(iii) application of the simulator to evaluate the robustness of current management regulations under 

different levels of recruitment. This study discusses how simulations can highlight uncertainties in 

input data and model structure and set up the stage for the simulation study to evaluate impacts of 

conservation measures on the lobster population dynamics.  

 

II-2. Methods 

The IBLS was developed by Chen et al. (2005) to test the performance of the stock assessment 

model and further developed by Chang (2015) for management evaluation. An IBM was used to 

develop the IBLS for the GOM lobster fishery by expressing numerous components of the model 

equations as random Bernoulli trials (Chen et al. 2006; Chang 2015; Fig. II-1). Instead of calculating 

the number of lobsters that survive a given process such as natural mortality or fishing mortality, we 

simulate natural or fishing mortality acting on Nt individual lobsters. Because IBMs are not based on 

traditional mathematical formula, the IBLS cannot be described in one or a few equations. IBMs are 

bottom-up models in which population-level outcomes emerge from variation among individuals 

(DeAngelis and Grimm 2014).  

 

 
1Figure II-1. Flowchart of the individual-based American lobster simulator. Each lobster has a 

conditional probability of going through each process, as the probability at each process depends on 

what processes the lobster previously went through. The diagram was modified from Chen et al. 

(2005) and Chang (2015).  
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II-2-1. Model Description 

II-2-1-1. Inputs 

 

The IBLS requires abundance, recruitment, and other types of data (Table II-1). Most of the 

probabilities and other input data are from the stock assessment data (ASMFC 2015), but fishing effort 

data are from the Maine Department of Marine Resources (DMR) harvester data, and v-notching 

information is from personal communication with managers (Table II-1). These are the best available 

data representing the GOM lobster fishery dynamics. Most of the probabilities have means that are 

parameters from stock assessment model. In this case, the stock assessment parameters and output are 

assumed to be the true state of the lobster fishery. Select input and probabilities are tuned or calibrated 

as described later.  

 

Table II-1. Input data for the individual-based American lobster simulator. The most recent American 

lobster stock assessment is the Atlantic States Marine Fisheries Commission (ASMFC, 2015) source. 

Personal communication was with Maine lobstermen and Maine Department of Marine Resources 

staff. Harvester data are from the Maine DMR.  

Inputs Values Source 

Initial abundance 93,200,000  ASMFC 2015 

Initial size composition  Differs among sizes ASMFC 2015 

Initial sex ratio 0.546 ASMFC 2015 

Recruitment Differs among years in 

summer and fall; 0 in winter 

and spring 

ASMFC 2015 

Recruit size composition  Differs among sizes  ASMFC 2015 

Natural mortality 

probability 

0.025 each timestep ASMFC 2015 

Molting probability  Differs among sizes ASMFC 2015 

Probability of growth 

increments per molt 

Differs among sizes ASMFC 2015 

Maximum interval in 

between molts 

7 seasons Personal communication  

Time between first molt and 

second molt if there is a 

double molt in a year  

1 season ASMFC 2015 

Maximum molt increment 

(mm) 

20 ASMFC 2015 

Number of molts a V-Notch 

lasts 

2 Personal communication 

Molting mortality 

probability 

 

0.05 

 

ASMFC 2015 

Fishing effort (trap haul set 

over days) 

Average of 1,085,440 in 

winter, 4,512,963 in spring, 

25,485,938 in summer, and 

8,606,713 in fall 

Harvester data  

Landings Differs among sizes, sexes, 

seasons, and years 

ASMFC 2015 
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Conservation selectivity  Differs among sizes, sexes, 

seasons, and years 

ASMFC 2015 

Legal selectivity  Differs among sizes, sexes, 

seasons, and years 

ASMFC 2015 

Abundance  Differs among sizes, sexes, 

seasons, and years 

ASMFC 2015 

Maximum legal size (mm 

CL) 

128 ASMFC 2015 

Minimum legal size (mm 

CL) 

1982-1987: 81, 1988: 82, 

1989-2013: 83 

ASMFC 2015 

Table 3.1. continued 

 

Number of timesteps until a 

mature female lobster can 

have eggs after she molts 

 

 

4 seasons 

 

 

Personal communication 

Maximum number of 

timesteps a mature female 

lobster can keep her eggs 

4 seasons Personal communication  

Probability of a lobster 

caught with eggs being V-

Notched by a lobsterman 

0.9 Personal communication 

 

Some of the probabilities, such as encounter probability, were calculated from the input data. 

Encounter probability is the probability that a lobster is caught in a trap and is calculated for each 

season, year, sex, and size class (Chang 2015). This is conceptually similar to catchability. Encounter 

probability was calculated as: 

                                      𝐸𝑛𝑟𝑎𝑡𝑒𝑡,𝑠,𝑘 =
𝐶𝑡,𝑠,𝑘

𝐶𝑡,𝑠,𝑘+𝑁𝑡+1,𝑠,𝑘
                                                     (1)                                    

where Ct,s,k is the catch on boats before the lobsters that are illegal to be landed are thrown back, or the 

total number of lobsters that are caught in time t for sex s and size class k and Nt+1,s,k is the abundance 

in time t+1 for sex s and size class k. Catch on boats, or the amount of lobsters on the boat before 

protection from conservation measures occurs, was calculated as:  

    𝐶𝑡,𝑠,𝑘 =
𝐿𝑡,𝑠,𝑘

𝑆𝑡,𝑠,𝑘
𝑐𝑜𝑛𝑠𝑆

𝑡,𝑠,𝑘
𝑙𝑒𝑔𝑎𝑙                                                               (2) 

where 𝐿𝑡,𝑠,𝑘  is the landings (of the fishery) in time t for sex s and size class k, 𝑆𝑡,𝑠,𝑘
𝑐𝑜𝑛𝑠 is the conservation 

selectivity in time t for sex s and size class k, and 𝑆𝑡,𝑠,𝑘
𝑙𝑒𝑔𝑎𝑙

 is the legal selectivity in time t for sex s and 

sizeclass k. Conservation selectivity is the proportion of lobster landed from not being protected from 

having eggs or being v-notched. Legal selectivity is the proportion of lobster landed from being of 

legal size.  𝐶𝑡,𝑠,𝑘 plus 𝑁𝑡+1,𝑠,𝑘 is the abundance of the current timestep before fishing mortality, the last 

process in the IBLS but after natural mortality and growth, plus the lobsters that are released. The 

denominator in equation 1 includes lobsters that are released, because in reality, those lobsters could 

be caught again in a given timestep and need to be included in the total number of lobsters that the 

catch on boat can be removed from. Encounter probability is then scaled by fishing effort to represent 

the probability of being caught in the fishery. 
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II-2-1-2. State variables and scales  

Individual lobsters are characterized by the state variables size (carapace length (CL) in 

millimeters), sex, maturity status, egg status, survival status (if the lobster is alive or dead because of 

either fishing or natural mortality), and V-notch presence. The temporal range is from the years 1982 

to 2013 because the time range of the most recent American lobster stock assessment model output is 

from 1982 to 2013 (ASMFC 2015). The spatial extent is the GOM lobster stock area (Fig. II-2). The 

model has four timesteps: winter (January–March), spring (April–June), summer (July– September), 

and fall (October–December). There are 35 size classes. The largest size class is a plus group that 

includes all lobsters larger than or equal to 223 mm CL, and the smallest size class is 53 mm CL; this 

is the smallest size at which a lobster can grow above legal minimum size in one molt. The size class 

interval of 5 mm CL was chosen because the minimum molting increment is 5 mm CL (ASMFC 

2015). 

 
2-Figure II-2. The Gulf of Maine (GOM) lobster stock area. 

 

II-2.1.3. Process overview and scheduling  

 

Individual lobsters are traced throughout the simulation, which includes biological and fishery 

processes, until the individuals die of natural or fishing mortality. At first, 93,200,000 lobsters are 

traced, but this number changes due to mortality and recruitment. The first part of the IBLS includes 

the biological processes such as natural mortality and growth. In each time step in the IBLS, each 

individual lobster is first assessed to see if it is mature; this determines if the lobster is a part of the 

spawning stock biomass (SSB) and can produce eggs. It then has a probability of dying from natural 

mortality such as predation. If the lobster does not die, it has a probability of molting and growing a 

specific molt increment. Larger lobsters molt less frequently and have smaller molt increments. If it 
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has been two molts since its last v-notch, it will lose its v-notch, as the v-notch will grow out with 

each molt. After molting, the lobster then has a probability of dying from molting mortality. 

If it survives or did not molt, it has a probability of being caught in the fishery (encounter 

probability). Once caught, if it is of illegal size or has a v-notch from a previous timestep, it is released 

back to the population. There is no mortality when lobsters are released back to the population. If it 

has eggs, it has a probability of being v-notched by a lobster fisher and then released back to the 

population. Once v-notched, it is released back to the population and protected from harvest for two 

molts. The released lobster can be harvested in the next time step if it is legal to be caught. If an egg-

bearing lobster is not v-notched, the lobster fisher still releases the lobster back to the population 

because it is illegal to land lobsters with eggs. If the lobster did not die from fishing mortality, it 

survives to the next time step. 

The lobsters that survive to the next time step plus the recruits into the fishery equals the 

number of lobsters that go through the life history and fishery processes in the next time step. Each 

individual lobster entering the IBLS goes through all the processes repeatedly until it dies due to 

natural mortality or is caught in the fishery. Two recruitment events occur in the summer and fall, 

when molting occurs. At the end of each discrete time step, the state variables are updated and 

recorded. The internal process of the IBLS is programmed in C++ (Chang 2015), and the input and 

output data are handled and analyzed in the R programming environment (R Core Team 2017). 

 

II-2-1-4. Initialization  

 

 The initial size composition (𝑝𝑘,1982
𝑠 ) and abundance (𝑁1982

𝑠 ) for each sex is specified, so that 

the number of lobsters for each sex s in size class k in the first assessment timestep (i.e., winter in 

1982 (the first timestep of the stock assessment output)) is:  

    𝑁𝑘,1982
𝑠 = 𝑝𝑘,1982

𝑠 𝑁1982
𝑠                                                     (3) 

                                                  

The fishery was initially occupied with 93.2 million lobsters with an initial sex ratio of 0.546. There 

was a burn in period of five years to get the amount of lobsters with a v-notch to the levels of that in 

1982.  

 

 

II-2-1-5. Submodels 

 

II-2-1-5-1. Recruitment 

For the historical simulation and calibration parts of the study, historical recruitment was used. 

For evaluating the current management regulations under different levels of recruitment, we used three 

different recruitment levels: low, intermediate, and high. Under the assumption that estimated 

historical recruitment from the stock assessment has some errors, recruitment was drawn from a 

normal distribution with a given mean and a coefficient of variation (CV) of 10%. The means of the 

low and high recruitment levels were the means of the five lowest and five highest historical 

recruitment values, respectively. The intermediate recruitment level mean was the mean of all the 

historical recruitment values. 

 

II-2-1-5-2. Maturity  

 The proportion of females that are mature, which make up the SSB, at a certain CL is defined 

with a logistic equation (ASMFC 2015):  
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𝑃𝑚𝑎𝑡𝑐𝑙 =
1

1+𝑒27.243−0.3𝐶𝐿                            (4) 

The size of 50% maturity is estimated to be around 91 mm CL (ASMFC 2015). This equation 

determines the probability that an individual lobster is mature.  

 

II-2-1-5-3. Weight-length relationship 

The weight-length relationship used in the IBLS to calculate stock biomass for males is 

described as (ASMFC 2015): 

𝑊𝐿 = 5.21 𝑋 10−7𝐶𝐿3.07814                                                   (5) 

For females it is described as (ASMFC 2015):  

𝑊𝐿 = 8.67 𝑋 10−7𝐶𝐿2.97157                                                (6) 

where CL is carapace length in mm for each lobster (ASMFC 2015). 

 

II-2-1-6. Output 

 

The output from each simulation is carefully documented. The output data can be aggregated 

into fishery indicators such as year-, season-, and size-specific abundance, biomass, and catch. 

Biomass can be estimated by summing the weights of individual lobsters after weight is determined 

from the weight-length models (ASMFC, 2015). Total biomass, By
total,s

, and legal biomass, By
legal,s

, in 

year y for sex s are estimated as:  

𝐵𝑦
𝑡𝑜𝑡𝑎𝑙,𝑠 = ∑ 𝑁𝑘,𝑦

𝑠 𝑤𝑘
𝑠

𝑘                                                        (7) 

𝐵𝑦
𝑙𝑒𝑔𝑎𝑙,𝑠

= ∑ 𝑁𝑘,𝑦
𝑠 𝑝𝑘,𝑦

𝑠 𝑤𝑘
𝑠

𝑠𝑖                                                (8) 

where 𝑤𝑘
𝑠 is the weight of the lobster in size k, and 𝑝𝑘,𝑦

𝑠  is a switch (0 for size classes not of legal size, 

and 1 for legal size classes).  

 

II-2-1-7. Model calibration  

 

With these probabilities and input data, the base case, or historical fishery, was simulated. 

Additionally, catch and size composition data were aggregated from the American lobster stock 

assessment, and these data were used to tune the IBLS. The historical fishery simulation is 

systematically calibrated, or tuned, to minimize the objective function to match the observed data 

(from the stock assessment) using all possible combinations of coefficients or scalers for specific 

parameters with equal weight on both catch and size composition. A range of values of coefficients 

was chosen for initial abundance, recruitment, and season-specific encounter probabilities. The 

historical fishery was simulated from 1982 to 2013 with every possible combination of coefficients. 

The coefficients that minimized the objective function, which was the coefficient of variation of the 

root mean square error (CVRMSE) between the observed (from the stock assessment) and simulated 

catch and size composition, were chosen (Table II-2). In this case, parameters are not estimated in a 

statistical estimation, but coefficients or scalers for predetermined parameters are identified. These 

variables are tuned with the scalers rather than estimated. Tuning the IBLS with coefficients is 

necessary to find the optimal coefficient values given the data so that the observed historical fishery 

can be simulated. With the calibrated IBLS, we then observed trends in the outputs such as catch and 

abundance. The calibrated IBLS could then be used to evaluate management regulations. 

 

Table II-2. The optimal coefficients for the parameters that were tuned in the IBM. These coefficients 

produced the smallest objective function.  
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Parameter Coefficient value 

Initial abundance 0.7 

Recruitment 1.2 

Encounter probability  

        Winter  1.9 

        Spring 2.9 

         Summer 0.7 

        Fall 0.7 

 

II-2-1-8. Application  

 

To illustrate some of capabilities of the simulator, we evaluated the current management 

regulations under different levels of recruitment: low, intermediate, and high. The different 

recruitment levels were projected for the years 2014–2023. Mean encounter rates of the most recent 5 

years were used for each of the projection years. The status of the fishery was assessed using ad hoc 

biological reference points that were used in the most recent lobster stock assessment (ASMFC 2015). 

The target reference points were the 25th percentile of historical exploitation rate and the 75th 

percentile of historical reference abundance, and the limit reference points were the 75th percentile of 

historical exploitation rate and the 25th percentile of historical reference abundance. Reference 

abundance and exploitation rate are calculated using lobsters greater than 78 mm CL (ASMFC 2015). 

By comparing the reference abundance, exploitation rate, and landings of the different 

scenarios, we can ask (i) how would the fishery and lobster population be different if recruitment were 

to change, and (ii) are current management regulations robust to variability in recruitment? The 

simulations were run 50 times for each of the three scenarios: (i) low recruitment, (ii) intermediate 

recruitment, and (iii) high recruitment. 

 

II-3. Results 

II-3-1. Calibration 

 

The parameter coefficients that produced the smallest objective function (Table II-2) increased 

recruitment and decreased initial abundance. These coefficients also increased the winter and spring 

encounter probabilities and decreased the summer and fall encounter probabilities, as encounter 

probabilities can vary by season. The objective function seeks to minimize the sum of the CVRMSE 

of observed and predicted catch and size composition by time step. The error indicator (e.g., 

CVRMSE) was 0.92 with the coefficients and 1.11 without the coefficients. 

With these values of coefficients or scalers, the tuned IBLS accurately captured the historical 

annual and seasonal landings (Figs. II-3 and 4). Before tuning, the simulated annual landings were 

lower than the observed landings (Fig. II-3). Without the coefficients, the simulated seasonal landings 

were lower than the observed landings in the spring and summer but higher in the winter and fall (Fig. 

II-4). 
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3-Figure II-3. Simulated annual landings overtime. Observed = black dots, simulated with coefficients 

(tuned) = dashed blue line, and simulated without coefficients (not tuned) = grey line. 

 

 

 
4Figure II-4. Simulated seasonal landings over time. Observed = black dots, simulated with 

coefficients = dashed blue lines, and simulated without coefficients = grey lines.  

 

The IBLS simulated fewer small lobsters and more large lobsters in all seasons for both sexes 

but more so in the winter and spring (Figs. II-5 and II-6). Also, in the summer and fall, the IBLS 

simulated more male lobsters just above the legal minimum size (Fig. II-6). Before tuning, the 

simulated size composition better matched the size composition from the stock assessment (Figs. II-5 

and II-6). The biggest differences in size composition before and after tuning were in the winter and 

spring (Figs. II-5 and II-6). 
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5-Figure II-5. Simulated mean seasonal female size composition. Observed = black dots, simulated 

with coefficients = dashed blue lines, and simulated without coefficients = grey lines.  

 

 

 
6-Figure II-6. Simulated mean seasonal male size composition. Observed = black dots, simulated with 

coefficients = dashed blue lines, and simulated without coefficients = grey lines. 

 

 

II-3-2. Application 

With high recruitment (average of highest five years of recruitment), reference abundance 

remained steady and well above the abundance target reference point (124 million) from 2014 to 2023 

(Fig. II-7). With intermediate recruitment (average of historical recruitment), reference abundance 

declined below the abundance target reference point but remained above the abundance limit reference 

point (60.7 million) (Fig. II-7). With low recruitment (average of lowest five years of recruitment), 

reference abundance declined below the limit reference point (Fig. II-7). The rate of decline was larger 

with low recruitment and decreased over time in both the low and intermediate recruitment scenarios 

(Fig. II-7). 
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7-Figure II-7. Reference abundance from 2014 to 2023 with low, intermediate, and high recruitment. 

The horizontal dotted green line represents the target abundance reference point (124 million) (75th 

percentile of reference abundance). The horizontal dotted red line represents the limit abundance 

reference point (60.7 million) (25th percentile of reference abundance). 

 

 

Exploitation rate remained steady and above the exploitation rate limit (0.352) with high 

recruitment (Fig. II-8). With intermediate recruitment, exploitation rate declined to around the limit 

and then increased (Fig. II-8). With low recruitment, exploitation rate declined to below the target 

(0.332) and then increased to just above the target (Fig. II-8). Exploitation rates were similar across all 

recruitment levels until the fifth year of the projection (Fig. II-8). 

 

 

 
8-Figure II-8. Exploitation rate from 2014 to 2023 with low, intermediate, and high recruitment. The 

horizontal dotted green line represents the target exploitation rate reference point (0.332). The 

horizontal dotted red line represents the limit exploitation rate reference point (0.352). 

 

 

With high recruitment, landings only slightly declined (Fig. II-9). With intermediate 

recruitment, landings declined to about half of the amount in the first year of the projection (Fig. II-9). 
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Landings declined even more and at a faster rate with low recruitment (Fig. II-9). With both 

intermediate and low recruitment, the landings leveled off around year 6 of the projection (Fig. II-9). 

 

 

 
9-Figure II-9. Percent change in landings from 2014-2023 with low, intermediate, and high 

recruitment. 

 

 

II-4. Discussion 

 

In this study, an individual-based simulation tool that can be used to evaluate fisheries 

management is described, modified, parameterized, tuned, and applied. In this section, we discuss the 

lessons learned from calibrating the IBLS, the management implications for the American lobster 

fishery, and the applicability of this simulator in other crustacean fisheries. 

 

II-4-1. Lessons from calibrating the IBLS 

 

One of the main goals posed by the present study was to tune the IBLS by identifying 

appropriate values of coefficients for the IBLS parameters. Because fisheries are complex, variable, 

and difficult to observe, there is substantial uncertainty in fisheries models (Hill et al. 2007). Complex 

fisheries result in complex models and many assumptions, and data are frequently inadequate for 

evaluating complex models (Hill et al. 2007). Calibrating a model includes tuning the model by 

determining a set of parameters that fit the model to its data and can provide insights into the 

uncertainty of input data, model parameters, and model structure. This is different from estimating 

model parameters in a statistical model. Results from a simulation model are based on many initial 

parameter estimates, which are not known. Coefficients can be applied to inputs that are not as certain, 

and once the simulator is tuned, the more the coefficients deviate from 1, the more uncertainty can be 

expected from that input or model structure. 

In this study, there are discrepancies between results obtained before and after calibrating the 

IBLS. The large coefficients, or scalers, represent either inaccuracies of the input data or the IBLS 

structure. Interestingly, the simulated size composition matched the historical size composition better 

before tuning the model, which may be a result of the model catching more small lobsters to better fit 

the historical landings. Additionally, structural differences between the stock assessment model 

(ASMFC 2015) and the simulator may result in bias (Hill et al. 2007). Potential bias may be apparent 
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in the size composition of male lobsters in the summer and fall. The IBLS simulates more male 

lobsters just above the legal minimum size in these seasons, which may be a result of the IBLS 

simulating less catch of male lobsters overall to match the catch from the stock assessment. Tuning the 

IBLS highlights some uncertainties in the lobster stock assessment. The GOM lobster stock 

assessment model underestimated the amount of large lobsters (ASMFC 2015), and the tuned 

simulations produced more large lobsters than there were in the stock assessment output data, 

especially in the winter and spring, when migration to offshore waters occurs. In the IBLS, lobsters 

cannot migrate, so the large lobsters are kept within the system unless they die. Moving forward, the 

Atlantic States Marine Fisheries Commission (ASMFC) will combine the GOM lobster stock with the 

Georges Bank lobster stock because of the migration of large lobsters between the two stocks 

(ASMFC 2015). 

Tuning the IBLS addresses the uncertainty in the fishing effort, as well as other parameters. In 

this study, fishing effort was estimated from harvester data as trap haul set over days. Simulated 

landings are sometimes underestimated with no coefficients, which indicates that this may not be the 

best estimate of fishing effort. The effort data used in this study were obtained from fishing vessels 

that only target lobster. However, misreporting by lobster fishers is possible, and logbooks are only 

filled out by 10% of Maine lobster fishers which may not be representative of the fishery. Also, the 

stock area includes New Hampshire and Massachusetts fishery areas, and fishing effort data from 

those states were not included in this study. Additional factors such as lobster fisher skill and bait may 

also play a role. Future research should consider changes in skill and bait over time.  

As a result, the simulated annual, spring, and summer landings before calibration were all 

lower than the landings from the stock assessment, which indicates that the trap haul set over days 

from the harvester data may be an underestimation of fishing effort. The simulated landings in the 

winter and fall are higher than the landings from the stock assessment, which suggests that in those 

seasons, the harvester data may be an overestimation of fishing effort. The values of coefficients for 

the encounter probabilities had a much higher magnitude in the winter and spring than in the summer 

and fall, indicating that the harvester data are more reliable in the summer and fall than in the winter 

and spring. The same amount of trap haul set over days applied in the summer and fall can result in a 

larger catch than that of the winter and spring because of the differences in spatial distribution of 

lobster (Chang et al. 2010). 

However, the lack of fit to the observed catch and size composition may be an effect of 

inappropriate model structure and assumptions instead of the data input. For example, the IBLS is 

structured so that lobsters are only allowed to be caught once in a time step, when in reality, they 

could be caught and released several times in a time step. This affects the encounter-rate calculation, 

hence another reason to tune the encounter probabilities. Also, the lobsters and fishing effort are 

assumed to be distributed evenly across the area, which is not realistic. Lobsters are also assumed not 

to migrate out of or into the stock. Additionally, natural mortality is assumed to occur before growth 

and fishing. The response of lobster fishers to changes in the system was not incorporated into the 

simulator either.  

 

II-4-2. Management implications for the American lobster fishery  

 

The simulations in this study indicate that the robustness of Maine lobster fishery management 

regulations is dependent upon recruitment. However, the recruitment levels in these simulations are 

much different from each other because they are based off the historical recruitment, which has a wide 

range of values. Future studies should include different levels of recruitment that are closer in 

magnitude. 
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Nevertheless, according to the simulations, even if recruitment declines to a third of the current 

recruitment, abundance will still be above the limit abundance. Also, if recruitment were to decline to 

a tenth of the current recruitment, then exploitation rate would decline to below the target, which 

indicates that current management regulations allow for a reduction in exploitation rate with low 

recruitment. Current management regulations also allow for a reduction in exploitation rate with 

intermediate recruitment. Although catch declines dramatically with low recruitment, it only declines 

to a level similar to the historical catch in the mid-1990s. 

The tuned IBLS replicates the historic data well and therefore can be used to evaluate 

management regulations in the GOM lobster fishery. Simulators for fisheries management combine 

the best available data and can evaluate a variety of management scenarios (Grant et al. 1981). The 

simulator in this study can be a useful tool for management of the American lobster fishery and other 

lobster and crab fisheries by evaluating management strategies with consideration of varying 

biological factors. 

The simulator used in this study can be adapted to serve as an operating model within a 

management strategy evaluation (MSE) context. MSE is an emerging approach that can improve 

fisheries management because it is an adaptable framework for modeling a fishery management 

system instead of just the fish stock (Cochrane et al. 1998; Smith et al. 2008). MSE uses a simulator as 

a realization of the truth and can be used to identify management strategies that will fail at meeting 

objectives before deciding the final management measures (Harwood and Stokes 2003). However, to 

work towards a complete MSE, future studies should identify management objectives for the GOM 

lobster fishery with information from stakeholders. Failure in fisheries management is often due to 

lack of clearly defined management objectives. Future MSE work should involve lobster fishers early 

in the process. MSEs allow precautionary management to be implemented thoroughly and 

scientifically (Harwood and Stokes 2003). 

Not only can the simulator evaluate management strategies, but it can also be used to identify 

which factors influence the current lobster abundance and landings. In the GOM lobster fishery, fishers 

and scientists believe that both conservation measures and environmental factors have led to changes 

in the Maine lobster fishery and population (Acheson and Gardner 2010; Acheson and Steneck 1997). 

Future studies should use simulations to help identify the degree to which conservation measures and 

biological factors have influenced the fishery. 

Before the simulator can be used to test management scenarios, it is important that the 

assumptions of the simulator be understood. Because the conclusions may be incorrect if some of the 

numerous restraining assumptions are changed, the best performing management scenarios should be 

viewed with consideration of these assumptions. Some of these assumptions include no variation of 

population dynamics over space, no migration between stocks, constant natural mortality, and constant 

size at maturity. For the most part, the simulator is based on similar assumptions and the same 

equations as those in the stock assessment. Natural mortality and maturity equations used in the 

simulator are assumed to be known in the stock assessment, which is usually not true. 

Additionally, an important assumption of this simulator is that the behavior of the lobster 

fishers is a response to present management. The response of lobster fishers to new management 

measures are not considered, although it is important for policy performance (Sanchirico and Wilen 

2001). Parameterization of the response of lobster fishers to new management measures is difficult. 

Currently, the stock assessment also does not consider responses of lobster fishers to management 

measures (ASMFC 2015). In the stock assessment, no stock–recruitment relationship is assumed, 

which is why the simulator has multiple options for simulating recruitment. Future work with the 

simulator should focus on sensitivity analyses to evaluate the robustness of the results by varying 

these assumptions. 
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In this study, recruitment is not affected by changes in SSB that result from changes in 

management because there is no relationship between recruitment and SSB. The stock–recruitment 

relationship, which is often important in identifying the effects of long-term management scenarios, is 

difficult to quantify for American lobster. In general, the stock–recruitment relationship and the 

impact of environmental variability and biological factors on this relationship are unclear (Punt et al. 

2014). Although the simulator is based on single-species population dynamics, it can consider some 

effects of ecosystem variability when simulating recruitment. Rather than trying to identify a single 

best recruitment estimation method, uncertainty in recruitment can be explicitly and formally 

accounted for by incorporating a wide range of biologically plausible recruitment scenarios into the 

tuned IBLS. Other fishery simulators have included a range of structures for recruitment relationships 

(Punt and Smith 1999). Recruitment can be designated as a function of SSB and bottom-water 

temperature. Otherwise, recruitment can be drawn from theoretical distributions derived from 

historical recruitment that correspond to high and low SSBs. 

Future studies on simulations of the Maine lobster fishery should not only focus on recruitment 

estimation, but also on growth and fishing behavior changes. The GOM is experiencing rapid water 

temperature changes (Le Bris et al. 2018; Mills et al. 2013) and an aging Maine lobster fleet (Johnson 

and Mazur 2018). Temperature changes may influence lobster population dynamics, as temperature 

has a large effect on the life history of American lobster, especially on recruitment and growth (Aiken 

and Waddy 1986). This can be incorporated into the simulator by creating a relationship between 

temperature and recruitment and a relationship between temperature and growth matrices. An aging 

lobster fishing fleet may also impact the effectiveness of existing management because fishing 

behavior may begin to change, as different generations of fishers may have different perceptions of the 

resource (Nemec 1972; Silva 2016). For example, the percentage of compliance of v-notching may 

change over time. These changes could be incorporated by testing scenarios with different v-notching 

ratios. Incorporation of other information such as temperature changes and lobster fishing fleet 

dynamics may potentially improve the calibration of the IBLS. Incorporating temperature into the 

development of an SSB and recruitment relationship may improve the calibration of the IBLS and 

projection of the population. In addition, changing growth may result in changes in the effectiveness 

of existing size-related management. 

 

II-4-3. Applicability of the IBLS in other crustacean fisheries 

 

IBMs are useful alternatives to statistical models for crustacean management. Although 

statistical models work well for crustacean population dynamics, IBMs can also accurately simulate 

crustacean fisheries and can even be used to validate statistical model results. IBMs can be used to 

supplement stock assessments and inform fisheries management. As the IBLS is flexible, it can be 

modified for the use of a simulator in other crustacean fisheries as well. Numerous biological and 

management scenarios can be simulated with small alterations of the parameters. 

The IBLS can be especially useful for any lobster or crab fishery, as they have similar life 

history and fishery processes to American lobster. With an IBM approach, a variety of biological and 

fishery processes is included in the simulator. Crustacean life history processes such as molting, 

molting mortality, and bearing eggs are included. The individual-based approach can capture the non-

continuous molting processes that vary among individuals. 

The results from the present study are encouraging for the simulation of crustacean fisheries; 

however, additional explorations are needed. The simulator can integrate enhanced knowledge about 

the fishery and changes in some model assumptions, including changes in size at maturity or natural 
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mortality over time. The IBLS also has functionality that allows uncertainties in recruitment to be 

addressed, which should be used in future studies. 

Management measures that are common in crustacean fisheries such as legal sizes and 

protection of egg-bearing individuals are included in the simulator. IBMs are useful because they can 

treat each of the many complex management measures as separate processes rather than one combined 

selectivity. This differs from models in which total allowable catches or fishing effort levels are the 

only management measures included. An important feature of the IBLS is that it does not have fishing 

mortality as a parameter; instead, it is estimated. Using encounter probabilities as a proxy for fishing 

effort is important for the American lobster fishery, which does not have harvest control rules, so in 

testing management regulations, there should be no predetermined fishing mortality. Additionally, v-

notching is not practiced in all lobster fisheries. This simulator can be used as a tool to test this 

conservation measure in other fisheries. In the simulator, the compliance of v-notching can be set at 

different rates, which is important to consider for a management measure that cannot be fully 

enforced, as it occurs on the boat. Maximum size is another management measure not used in all 

lobster fisheries and can be tested with the simulator as well. In the IBLS, the number of fisheries and 

management measures is not a limitation. Many different management measures can be simulated 

alone and in combinations within the simulator such as marine protected area, total allowable catch, 

and different legal sizes. A combination of numerous management measures is more realistic. The 

seasonality of the simulator also allows evaluation of seasonal management measures. 

New knowledge can be easily integrated and updated in the simulator without recompiling the 

code. Economic variables, including price and price decreasing with landings, can also be 

incorporated into the fishery dynamics. Many bioeconomic models have been developed for 

crustacean fisheries and could be linked with the simulator (Clarke et al. 1992; Maynou et al. 2006; 

Holland 2011; Chang 2015). Currently, the IBLS is only parameterized for one area, but this is not 

fixed. Additional areas can be designated according to the data available. With the necessary data, 

IBMs have the flexibility to include multiple areas (Grimm 1999). Adaptive management simulations 

are also a valuable ability of the simulator, as management can be simulated as more conservative or 

less conservative when the fishery or fish population passes a reference point. Another innovation in 

this model is the inclusion of the ability to select different compliance rates for conservation measures. 

Another advantage that IBMs have over statistical models is the process-based design. This allows for 

easier communication to stakeholders about how the model works. A flowchart (such as in Fig. II-1) 

may be easier for stakeholders to understand than mathematical equations. 

Lobster fishery management can have effects that extend past the species and into the 

ecosystem. Future studies should address potential missing ecosystem processes in the simulator. 

Because of modeling limitations, not all effects of fisheries management can be examined with a 

single simulation tool. In many cases, adding extra details into the model to address these limitations 

may not be essential; as Walters et al. (1997) describe, we should not “go to too much detailed models 

without stopping to ask whether the extra is necessary”. The results from simulations will become less 

useful if additional uncertainties are integrated (Grant et al. 1981; Somers and Wang 1997). This may 

cause managers to not implement management measures that would have positive influences on the 

fishery (Grant et al. 1981). Adding multiple areas would require all of the input data for each area and 

the migration of lobsters among areas, which are often not available or difficult to quantify. Spatially 

explicit models are often not developed because of the sensitivity of fishery dynamics to migration 

coefficients and the difficulty of estimating the coefficients (Pelletier and Mahévas 2005). Because 

there is usually not enough detailed data compared with model complexity, parameter estimation for 

spatially explicit models is difficult (Pelletier and Mahévas 2005). Here, a trade-off between 

parsimony and complexity must be made. 
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In this study, an individual-based approach captures the necessary details of the life history and 

fishery processes of the American lobster. With the simulation tool that has been modified, 

parameterized, and calibrated in this study, the GOM American lobster fishery can be simulated. The 

process of tuning the IBLS highlights the uncertainty in the input data and model structure. This study 

begins to evaluate the robustness of current management regulations with variability in recruitment, 

but the simulator has the potential to explore more questions. This simulator can be used to evaluate 

the robustness of management regulations not only in the GOM lobster fishery but can also be 

modified for use in other lobster and crab fisheries. 

 

 

III. Evaluating V-notching on its impacts on the lobster fishery  

 

III-1. Introduction 

 

The lack of understanding of v-notching calls for a careful evaluation of this conservation 

measure and dissemination of results to the industry if v-notching is critical to the sustainability of the 

fishery. When conducting such a study, variability in fishing behavior, v-notch definitions, and lobster 

recruitment dynamics should be considered. Because the v-notch conservation measure is voluntary, it 

is important to consider variability in compliance rates (i.e., the percent of lobsters caught with eggs 

that will be v-notched by a lobster fisher). Also, different American lobster management areas have 

different v-notch definitions; some areas have less strict v-notch definitions, while other areas have 

strict v-notch definitions. Additionally, stock-recruitment dynamics are often difficult to define in a 

changing environment, which adds the uncertainty in our effort to evaluate the effectiveness of v-

notching (ASMFC 2015).  

Given the changing environmental conditions in the GOM which may greatly influence the 

lobster recruitment and growth dynamics (ASMFC 2015; Mcmahan et al. 2016; Tanaka and Chen 

2016), an improved understanding of the effectiveness of v-notching in regulating the lobster 

population dynamics becomes urgent and necessary. However, no systematic and comprehensive 

study has been done to evaluate and quantify the measure’s contribution to the improved lobster stock 

and landings with consideration of multiple stock-recruitment relationships, variability among 

individual lobsters, variation in management compliance, and variation in v-notch definitions. 

 

III-2. Methods 

 

In this chapter, the IBLS conditioned in this project was used to simulate the Maine lobster 

fishery. 

 

III-2-1. Recruitment dynamics 

 

Four different recruitment scenarios were considered, including scenarios with no relationship 

between recruitment and SSB, because the American lobster stock-recruitment relationship is not 

clear. In the first recruitment simulation scenario, recruitment was drawn from estimated historical 

recruitment of the corresponding year from the stock assessment (ASMFC 2015), assuming no stock-

recruitment relationship. Under the assumption that estimated historical recruitment from the stock 

assessment has some uncertainty, recruitment was drawn from a normal distribution with the 

estimated historical recruitment value of the corresponding year from the stock assessment as the 

mean and a coefficient of variation (CV) of 10%. 
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Recruitment is estimated annually in the stock assessment and divided into summer and fall 

portions (ASMFC 2015); therefore, in all the recruitment simulation scenarios, annual estimated 

recruitment values are used and then the resulting recruitment values are divided into summer and fall 

portions. Around 66% of recruitment occurs in the summer, and 33% of recruitment occurs in the fall 

(ASMFC 2015). 

The second recruitment simulation scenario was to randomly assign recruitment values from 

normal distributions, with means and standard deviations estimated from the stock assessment output, 

that correspond to five levels of SSBs (ASMFC 2015; Fig. III-1 and Table III-1). Higher recruitment 

values correspond with more recent years (Fig. III-2). This approach partially considered the possible 

relationships between SSB and annual recruitment. SSB was the SSB in the summer, because this is 

when lobster eggs hatch (Ennis 1995). SSB was lagged by six years, which is considered as the 

average time a young of the year lobster takes to reach size at recruitment (Campbell and Robinson 

1983; Fogarty and Idoine 1986). To simulate recruitment of a given year, a random number was drawn 

from the normal distribution of recruitment values that corresponded with the SSB from six years 

before. For the first six years (1982-1988), the first recruitment simulation scenario, in which 

recruitment values are drawn from a normal distribution with a mean of the estimated historical 

recruitment of the corresponding year from the stock assessment, was used. Historical recruitment was 

assumed for the first six years, because a change in v-notching would not affect recruitment until six 

years later; therefore, these scenarios simulate a change in v-notching in 1982. As this approach 

incorporates a relationship between recruitment and SSB, but not a theoretical stock-recruitment 

relationship, from here on, these scenarios are referred to as weak stock-recruitment relationship 

scenarios. 

 

 

 
10-Figure III-1. Time series of spawning stock biomass, recruitment, and landings and the weak stock-

recruitment relationship (SRR) distributions. a) Simulated spawning stock biomass (SSB) over time. 

Colors correspond to the distributions in the weak SRR. b) Estimated recruitment from the stock 

assessment over time. Colors correspond to the distributions in the weak SRR. c) Estimated landings 

from the stock assessment over time. d) The normal distributions of recruitment from the stock 

assessment that correspond to five different SSB levels. R1 corresponds to SSB that is below 10,000 

mt, R2 corresponds to SSB that is above 10,000 mt but below 12,500 mt, R3 corresponds to SSB that 
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is above 12,500 mt but below 16,000 mt, R4 corresponds to SSB that is above 16,000 mt but below 

19,000 mt, and R5 corresponds to SSB that is above 19,000 mt. 

 

 

Table III-1. Recruitment and spawning stock biomass (SSB) means and SDs of the normal 

distributions of recruitment values that correspond to five levels of SSB.  

SSB level (mt) Recruitment 

mean (millions) 

Recruitment 

SD (millions) 

SSB mean (mt) SSB SD (mt) 

<10000 62.05 25.84 7232.45 1968.92 

>10000 

<12500 

69.32 32.57 11050.11 1025.5 

>12500 

<16000 

107.18 21.18 14061.74 1308.39 

>16000 

<19000 

161.67 55.15 17831.86 436.64 

>19000 274.67 10.97 20035.9 394.27 

 

 

The third recruitment simulation scenario was to use a stock-recruitment model, because stock-

recruitment models are commonly used to predict recruitment. To define a stock-recruitment model, 

the SSB lagged by six years and recruitment data from the stock assessment were fit to a variety of 

Ricker and Beverton-Holt models (Chang et al. 2016). With a stock-recruitment model, recruitment 

continuously increases with SSB. This differs from the weak stock-recruitment relationship scenarios, 

which suddenly switched recruitment distributions with increasing SSB. To find the best stock-

recruitment model, four different stock-recruitment models were developed: Ricker and Beverton-Holt 

models with no temperature and with average bottom water temperature in the summer and fall. The 

model with the lowest Akaike information criterion (AIC) was chosen for this recruitment simulation 

scenario. The temperature was the annual average GOM bottom water temperature in the summer and 

fall months (July- December) from 1982 to 2013 from Finite-Volume Community Ocean Model 

(FVCOM) stations (Chen et al. 2006). Bottom water temperature was chosen, as it has a large role in 

driving lobster distribution (Chang et al. 2010). Temperature from the summer and fall was chosen, 

because recruitment occurs in these seasons (ASMFC 2015). 

The Ricker model with no temperature was 𝑅 = 𝛼𝑆𝑒−𝛽𝑆𝑒𝜀 (Ricker 1954, 1958), and the 

Ricker model with temperature was 𝑅 =  𝛼𝑆𝑒−𝛽𝑆𝑒𝛾𝑇𝑒𝜀 (Penn and Caputi 1986). The Beverton-Holt 

model with no temperature was 𝑅 =  
𝑆

𝛼+ 𝛽𝑆
𝑒𝜀 (Beverton and Holt 1957), and the Beverton-Holt model 

with temperature was 𝑅 =  
𝑆

𝛼+ 𝛽𝑆
𝑒𝛾𝑇𝑒𝜀 (Quinn and Deriso 1999). R is the number of recruits, S is the 

SSB, T is the average bottom water temperature of the GOM in the summer and fall months, 𝛼 is the 

density-independent parameter proportional to fecundity, 𝛽 is the density-dependent parameter, γ is a 

coefficient expressing the magnitude of the effect of temperature, and 𝜀 is the multiplicative error 

term. The parameters: 𝛼, 𝛽, and 𝛾 had a range of values, based on 90% confidence intervals 

determined by bootstrapping. In the v-notching scenarios, these parameters were chosen for each 

iteration by randomly selecting the parameters from these ranges of values. For the first six years 

(1982-1988), the first recruitment simulation scenario was used. The fourth recruitment simulation 

scenario was a stock−recruitment model with an increased density dependence effect. The purpose of 

this recruitment simulation scenario was to determine how sensitive the results were to density-
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dependence effects. This recruitment scenario followed the same methods as the third recruitment 

scenario, except the distribution of the β parameter was modified so that all values were several orders 

of magnitudes larger those in the bootstrapped β distribution. 

 

III-2-2. V-notching scenarios 

 

Within the IBLS, we addressed effect of v-notching on lobster landings and biomass. We 

simulated different v-notching conservation compliance levels (0, 50, and 100%) and different 

numbers of molts until a v-notch grows out (1 or 2 molts) with the 4 different recruitment simulation 

scenarios from 1982−2013 (Table III-2). These simulations focused on the long-term effects of 

different notch definitions and compliance regimes. 

 

 

Table III-2. The different v-notching scenarios.  

Scenario Compliance rate (%) Definition  Time until a v-notch   

grows out (years) 

Reference 90 Strict  4  

0 0 N/A N/A 

50-S 50 Strict 4 

100-S 100 Strict 4 

50-L 50 Less strict 2 

100-L 100 Less strict 2 

 

 

Tully (2004) pointed out that determining the contributions of v-notching and other 

conservation measures would be impossible if the measures were concurrent. However, with the 

IBLS, it is possible to identify the contribution of concurrent conservation measures, because each 

conservation measure is simulated as a separate process. Indeed, many conservation measures can be 

applied concurrently to the fishery. This approach may lend itself to handling more complex 

management problems in situations involving varying compliance rates and enforcement criteria. 

Conservation measures can be evaluated with different enforcement criteria with the IBLS. 

This is realistic for measures that are not easily and consistently enforced, such as v-notching. In this 

case, the size of a notch that is considered a v-notch can differ, so considering different criteria or v-

notch definitions is necessary for understanding the measure’s impact on the fishery and population. 

The number of molts until a v-notch grows out depends on how strict the v-notch management 

definitions are; from here on, 2 molts will be referred to as a strict definition and 1 molt will be 

referred to as a less strict definition. With a strict definition, more molts are needed for the v-notch to 

grow out because any size notch is considered a v-notch. Lobster fishers can keep the lobsters after 

approximately 2 yr with a less strict definition and 4 yr with a strict definition, since mature female 

lobsters tend to molt every other year. The state of Maine currently has a zero tolerance v-notch 

definition, meaning that a lobster with any notch depth is illegal to land; however, in other lobster 

management areas a lobster with a notch of less than 1/4th to 1/8th of an inch (3− 6 mm) can be 

landed. 

When evaluating conservation measures, a benefit of using the IBLS is that different 

compliance rates can be applied in the simulation. Instead of only considering scenarios of 

implementing a conservation measure or not, conservation measures can be implemented with varying 

degrees of compliance, which is more realistic. Compliance may differ based on fishermen’s reactions 
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to management measures, so consideration of the response of fishermen is necessary when evaluating 

the impact of management. Maintaining varying degrees of compliance is especially realistic in cases 

where the conservation measure is difficult to enforce. 

In these simulations, the probability of a legal sized lobster being v-notched by a lobster fisher 

if it is caught with eggs represents the v-notching compliance rate, meaning that 0, 50, or 100% of 

legal sized lobsters caught with eggs are v-notched. If the lobster is v-notched, it is released back to 

the population and protected from harvest for 1 or 2 molts. If the lobster is not v-notched, it is released 

back to the population and can be harvested in the next timestep. Simulations were performed 50 

times for each scenario from 1982−2013 due to computational demands. 

The results from these simulations were compared with those for the reference scenario, which 

is the historical scenario. The reference scenario simulates what occurred in the fishery using the first 

recruitment scenario, or historical recruitment. Historically, there was a 90% v-notching compliance 

rate and a strict v-notching definition (Mazur et al. 2018), and these were implemented in the 

reference scenario as well. 

Because changes in the v-notching compliance and v-notch definition may not always have a 

detectable effect on the fishery and population, we used independent samples t-tests to determine if the 

final SSBs and cumulative landings were significantly different (α < 0.05) between scenarios. 

 

III-3. Results 

In general, v-notching positively affected American lobster SSB, but more so with a 

stock−recruitment relationship (Fig. III-2). V-notching positively affected cumulative landings with a 

stock−recruitment relationship but negatively affected cumulative landings without a stock− 

recruitment relationship (Fig. III-2). Both high compliance and a strict definition increased the 

positive effect of v-notching (Fig. III-2). Because the Ricker models did not predict recruitment well 

(Fig. A21; Mazur 2021), determining the effect of v-notching from these scenarios was difficult. 

 

 

 
11-Figure III-2. American lobster v-notching scenario results. (a,b) Spawning stock biomass (SSB) in 

the last year of simulations (2013) of 0% and 100% v-notching compliance rates with different 

definitions and with (a) historical recruitment and (b) recruitment from the weak stock−recruitment 



 

26 

 

relationship. (c,d) Cumulative landings of scenarios with 0% and 100% v-notching compliance rates 

with different definitions and with (c) historical recruitment and (d) recruitment from a weak 

stock−recruitment relationship. S: strict; L: less strict; NA: no v-notch definition because there was 

0% compliance. Box midline = median; upper box limit = 75% quartile, upper hinge; lower box limit 

= 25% quartile, lower hinge; lower whisker: smallest observation greater than or equal to lower hinge 

– 1.5 × interquartile range (IQR); upper whisker = largest observation less than or equal to upper 

hinge + 1.5 × IQR. These are the same for all boxplots in the figure. 

 

 

III-3-1. Results with fixed, historical recruitment 

 

With the historical recruitment scenario, higher v-notching compliance and a stricter v-notch 

definition significantly (p-values < 1.60 × 10–5) positively affected SSB (33% higher with 100% 

compliance and a strict definition than with 0% compliance) (Fig. III-3, Table III-3). However, the 

difference in SSB between the 100% compliance with a strict definition scenario and the reference 

scenario (i.e. what occurred in the fishery) was negligible (p = 0.79) (Fig. III-3). The SSBs with 100% 

v-notching compliance with a less strict definition were slightly less than the SSBs with 50% v-

notching compliance with a strict definition (Fig. III-3, Table III-3).  

 

 

 
12-Figure III-3. V-notching scenarios with historical recruitment. Median American lobster (a) 

spawning stock biomass (SSB) and (c) landings from 1982−2013 with 0, 50, and 100% v-notching 

probabilities, with strict (S) and less strict (L) definitions, and with historical recruitment. (b) SSB and 

(d) cumulative landings in the last year of the simulations (2013) of 0, 50, and 100% v-notching 

compliance rates with different definitions and with historical recruitment. Results from the reference 

or historical scenarios are also included. NA: no v-notch definition because there was 0% compliance; 

R: reference scenario with 90% compliance and a strict definition. 

 

 

Table III-3. The median, lower confidence interval (C.I.) (80%), and upper confidence interval (C.I.) 

(80%) of the spawning stock biomass (SSB) in metric tonnes from the last year of each of the 

recruitment, V-Notching compliance, and V-Notch definition scenarios.  

Scenario Median (mt) Lower C.I. (mt) Upper C.I. (mt) 

Reference Scenario (90% 

compliance with a strict definition) 

46868 44863 48991 
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Historical recruitment    

0% 35600 33273 37698 

50% with a strict definition 43096 40924 45715 

100% with a strict definition 47316 44920 49262 

50% with a less strict definition 38755 36592 40905 

100% with a less strict definition 41817 39653 44202 

Weak stock-recruitment relationship    

0% 13674 11455 15555 

50% with a strict definition 24321 21621 29264 

100% with a strict definition  52616 33188 59172 

50% with a less strict definition 18026 14865 21115 

100% with a less strict definition 22192 20016 25773 

Ricker model recruitment    

0% 4049 4671 5314 

50% with a strict definition 19141 16787 21522 

100% with a strict definition 29631 27161 32844 

50% with a less strict definition 10769 9202 12269 

100% with a less strict definition 15733 14633 18212 

Ricker model recruitment with 

increased density-dependence  

   

0% 4266 3794 5103 

50% with a strict definition 16250 14861 17873 

100% with a strict definition 24224 22534 26945 

50% with a less strict definition 9578 8755 11104 

100% with a less strict definition 14085 12681 15469 

 

 

The landings of the different scenarios did not notably differ from each other over time in the 

historical recruitment scenarios (Fig. III-3). However, v-notching had a negative effect on cumulative 

landings (1.9% higher with 0% compliance than with 100% compliance and a strict definition). Most 

of the cumulative landings of the various scenarios differed significantly (p-values < 0.04), except for 

the cumulative landings of the strict definition scenarios and reference scenario (p-values > 0.05), the 

50% compliance with a strict definition and the 100% compliance with a less strict definition 

scenarios (p = 0.228), and the less strict definition scenarios (p = 0.348) (Table A25 in Mazur 2020). 

The scenario with no v-notching had the highest cumulative landings, followed by the scenarios with 

less strict definitions, then the scenario with 50% compliance with a strict definition, and then the 

100% compliance with a strict definition and reference scenarios (Fig. III-3, Table III-4). 

 

 

Table III-4. The median, lower confidence interval (C.I.) (80%), and upper confidence interval (C.I.) 

(80%) of the cumulative landings in metric tonnes of each of the recruitment, V-Notching compliance, 

and V-Notch definition scenarios.  

Scenario Median (mt) Lower C.I. (mt) Upper C.I. (mt) 

Reference Scenario (90% with a 

strict definition) 

885641 866906 902586 

Historical recruitment    

0% 900705 881989 920561 
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50% with a strict definition 892349 872429 1176305 

100% with a strict definition 884293 867689 903623 

50% with a less strict definition 897743 877295 913353 

100% with a less strict definition 894253 877563 913492 

Weak stock-recruitment 

relationship 

   

0% 700318 645521 741212 

50% with a strict definition 753058 674208 812215 

100% with a strict definition 928331 742080 995844 

50% with a less strict definition 709219 644956 782125 

100% with a less strict definition 736278 667777 801478 

Ricker model recruitment    

0% 347086 332866 366472 

50% with a strict definition 525284 502732 563015 

100% with a strict definition 624020 605157 675085 

50% with a less strict definition 440004 416481 468897 

100% with a less strict definition 494312 468181 529320 

Ricker model recruitment with 

density-dependence  

   

0% 279149 264276 290662 

50% with a strict definition  431833 408764 458245 

100% with a strict definition  515884 488519 548969 

50% with a less strict definition  362657 341657 379928 

100% with a less strict definition  403271 385252 435226 

 

 

III-3-2. Simulation results for weak stock-recruit relationships 

 

For the weak stock−recruitment relationship scenarios, v-notching positively affected SSBs 

(285% higher with 100% compliance and a strict definition than with 0% compliance) (Fig. III-4, 

Table III-3). The SSBs from the reference scenario (i.e. what occurred in the fishery) were slightly 

below the SSBs from the 100% compliance with a strict definition scenario (Fig. III-4, Table III-3). 

The final SSBs were highest with the 100% v-notching compliance with a strict definition (Fig. III-4, 

Table III-3). Scenarios with strict definitions resulted in an increase in SSB that was not observed in 

the less strict definition scenarios (Fig. III-4). Also, the final SSBs in each of the scenarios differed 

significantly (p-values < 4.17 × 10–5), except for the difference between the 100% compliance with a 

strict definition and reference scenarios (p = 0.79) (Table A22 in Mazur 2020). 
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13-Figure III-4. Same as Fig. III-3, but showing the results of the simulations with the weak-stock 

recruitment relationship. 

 

 

For the weak stock−recruitment relationship scenarios, v-notching had a positive effect on 

cumulative landings (33% higher with 100% compliance and a strict definition than with 0% 

compliance) (Fig. III-4, Table III-4). The landings of the 100% compliance and strict definition and 

reference scenarios increased dramatically after 2005, unlike the landings from the other scenarios 

(Fig. III-4). Like the SSBs, the landings were highest with 100% compliance and a strict definition, 

followed by the reference scenario landings, landings with 50% compliance and a strict definition, 

landings with 100% compliance and a less strict definition, landings with 50% compliance and a less 

strict definition, and then landings with 0% compliance (Fig. III-4, Table III-4). The landings from the 

reference and the 100% compliance and strict definition scenarios were similar throughout the time 

series (Fig. III-4). In the scenarios with 100% compliance and a less strict definition and 50% 

compliance and a strict definition, the landings were similar (Fig. III-4, Table III-4). Most of the 

cumulative landings differed significantly (p-values < 0.04), except for the cumulative landings from 

the 100% compliance with a strict definition and reference scenarios (p = 0.74), from the 50% 

compliance with a strict definition and 100% compliance with a less strict definition scenarios (p = 

0.33), and from the 50% compliance with a less strict definition and 0% compliance scenarios (p = 

0.08) (Table A26 in Mazur 2020). 

 

III-3-3. Simulation results with strong stock-recruit relationships 

 

When theoretical stock−recruitment models estimated recruitment, the best model was the 

Ricker model without temperature. The AIC value for the Ricker model without temperature was the 

lowest (57.6), followed by the AIC value for the Beverton-Holt model with temperature (58.9394), 

and the Ricker model with temperature (58.9396). The Beverton-Holt model without temperature did 

not converge. The predicted recruits from the best model overall followed the same trend as the 

historical recruits; however, the model tended to overestimate recruits at intermediate levels of SSB 

and underestimate recruits at high and low levels of SSB (Fig. A21 in Mazur 2020). The bootstrapped 

β parameters were all small negative numbers close to zero, so the modified β parameter distribution 

for increased density-dependence was the positive transformation of the bootstrapped distribution.  

Because the Ricker model could not accurately estimate lobster recruitment at low and high 

SSBs, the SSBs in all scenarios with recruitment estimated from the Ricker model and the Ricker 
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model with an increased density-dependence effect were lower than the reference SSB (Figs. III-5 & 

III-6, Table III-3). With the Ricker models, v-notching had a positive effect on SSB (468–632% 

higher with 100% compliance and a strict definition than with 0% compliance) (Figs. III-5 & III-6, 

Table III-3); 100% compliance with a strict definition most positively affected SSB, and the SSBs 

with no v-notching decreased over time (Figs. III-5 & III-6). The SSBs in the other scenarios did not 

increase drastically over time (Figs. III-5 & III-6). With an increased density-dependence effect, the 

results were similar to that of the regular Ricker model, but the differences between the compliance 

and definition scenarios were smaller (Fig. III-5, Fig. III-6, Table III-3). All the final SSBs 

significantly differed from each other (p-values < 2.71 × 10–13) (Tables A3 and A4 in Mazur 2020).  

 

 

 
14- Figure III-5. Same as Fig. III-3, but showing the results of the simulations with the Ricker stock-

recruitment model. 

 

 

 

 
15-Figure III-6. Same as Fig. III-3, but showing the results of the simulations with the Ricker stock-

recruitment model with an increased density-dependence effect. 

 

 

Like the SSBs, cumulative landings were positively affected by v-notching with recruitment 

from the Ricker models (80–85% higher with 100% compliance and a strict definition than with 0% 
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compliance) (Figs. III-5 & III-6, Table III-4). Cumulative landings from the reference scenario were 

higher than that of all the different v-notching scenarios with recruitment estimated from the Ricker 

models (Figs. III-5 & III-6, Table III-4). Regardless, the landings increased with 100% compliance 

(Figs. III-5 & III-6). Similar to the SSBs with recruitment from the Ricker model, the landings also 

decreased with no compliance (Figs. III-5 & III-6). V-notching significantly positively affected 

landings (p-values < 4.10 × 10–8) (Tables A7 & A8 in Mazur 2020). There were no large differences 

between the cumulative landings of the regular Ricker model and the Ricker model with an increased 

density-dependence effect, but there were larger differences between the compliance and definition 

scenarios with the regular Ricker model than with the Ricker model with an increased density-

dependence effect (Figs. III-5 & III-6, Table III-4). 

 

III-4. Discussion 

 

The results of this study support the consensus among lobster fishers (Acheson and Gardner 

2010) that the protection of spawning female American lobsters, in this case by v-notching, has had a 

positive impact on the GOM lobster population and fishery. The magnitude of the positive impact of 

v-notching depended on the assumptions of the stock−recruitment relationship, compliance rate, and 

v-notch definition. V-notching always had a positive impact on SSB, and the impact on cumulative 

landings depended on the stock−recruitment relationship. 

In all scenarios, v-notching preserved SSB, which can act as a buffer if there were a downturn 

in the fishery or population. With historical recruitment, even if only half of the egg-bearing lobsters 

that were caught were v-notched, there would still be a significant positive impact on the population 

(21% larger with 50% compliance and a strict definition than with 0% compliance). With the 

assumption of a weak stock−recruitment relationship, v-notching had even greater impacts on the 

population, as the protected spawning stock contributed recruits into the fishery (285% larger with 

100% compliance and a strict definition than with 0% compliance). Under this weak 

stock−recruitment relationship recruitment scenario, there were even more advantages to a higher v-

notch compliance rate and strict v-notch definition. SSB did not experience such a dramatic increase 

without high compliance rates and a strict definition. With the assumption of a stock−recruitment 

model, a higher v-notch compliance and a strict v-notch definition had a significant large positive 

impact as well (468–632% higher with 100% compliance and a strict definition than with 0% 

compliance). Preserving SSB becomes increasingly important in the face of climate change, since 

warming waters may have deleterious effects on the lobster population. Le Bris et al. (2018) projected 

the American lobster fishery with warming water temperatures and found that management measures 

for conserving the reproductive potential can help mitigate the negative effects of climate change. 

The impact of v-notching on landings depended on the compliance, definition, and recruitment 

scenario. In historical recruitment scenarios, no v-notching produced the highest cumulative landings 

(1.9% higher with 0% compliance than with 100% compliance and a strict definition). With the 

assumption of a stock−recruitment relationship, v-notching had a positive impact on landings (33–

85% higher with 100% compliance and a strict definition than with 0% compliance). 

The results from these simulations also suggest that the v-notch definition had an important 

role. In all recruitment simulation scenarios, even 100% compliance with a less strict definition did 

not produce more SSB than 50% compliance with a strict definition. In the weak stock−recruitment 

relationship scenarios, even with 100% compliance rate but with a less strict definition, the SSB and 

landings would not have experienced a dramatic increase. However, this does depend on the 

assumptions in this study. One assumption is that the lobsters v-notched stay in the GOM stock area. 

If they were to go to another area, they could be landed with a less strict v-notch definition. Also, if 
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egg production were used as a metric instead of SSB, there is the possibility that a lobster could be v-

notched and never contribute more eggs under a less strict assumption, because mature lobsters bear 

eggs every other year. 

A strict definition of a v-notch only benefits SSB and does not reduce landings with a 

stock−recruitment relationship, suggesting that all areas should use a strict definition of a v-notch (i.e. 

takes at least 2 molts to grow out). Without high compliance and a strict definition, there is a risk of a 

negative impact on the fishery. The state of Maine has the strictest definition of a v-notch, but other 

US states and Canada currently have a less strict definition of a v-notch. 

The v-notching conservation measure sustained viable levels of fishery activity and is 

appropriate assuming that one objective of management is to maximize yield, under sustainability 

restraints. With conservation of biomass and an increase in landings, v-notching can be considered a 

tool for community-based conservation, in which both conservation and development are achieved 

(Berkes 2004). These results suggest that input controls, such as v-notching, can significantly benefit 

fish populations and fisheries. 

However, v-notching compliance has decreased in recent years in the Maine lobster fishery. In 

this study, we simulated constant compliances to determine the effect of v-notching; currently, the 

magnitude of the change in compliance and when this change began to occur is unknown. Future 

studies should focus on lobster fishers’ behavior regarding v-notching—more specifically, when the v-

notching compliance began to decrease and how v-notching compliance changes with the status of the 

lobster population. 

Future studies should also focus on understanding lobster recruitment, as the model results are 

dependent upon recruitment assumptions. This is especially important in understanding the effects of a 

conservation measure that protects the spawning stock with the long-term objective of increased 

recruitment. It was difficult to compare the results from the Ricker model recruitment scenarios to the 

reference scenario, because the Ricker model did not accurately capture historical recruitment. In 

general, the Ricker models were unable to represent the observed data, especially at high and recent 

SSBs. As a result, the results from the Ricker model scenarios could not be easily used to determine 

the effect of v-notching. However, if there were no stock−recruitment relationship, regulations that 

protect the spawning stock would not be important for the future of the fishery. In reality there is a 

stock−recruitment relationship that the data cannot show because of possibly large measurement 

errors, spatial differences in stock− recruitment relationships, and influences from environmental 

factors aside from temperature (Hilborn and Walters 1992). Chang et al. (2016) found that different 

stock−recruitment relationships existed at different spatial scales for the American lobster, possibly 

resulting from retention of pelagic larvae by oceanic circulations in the GOM (Xue et al. 2008), and 

the best model was at a medium spatial scale. Additionally, the productivity of American lobsters in 

the GOM may be changing due to increasing water temperatures which has caused an increase in 

suitable habitat (Tanaka and Chen 2016). In this study, the average temperature of FVCOM stations 

was used, but FVCOM stations are not distributed evenly throughout the GOM, which could have led 

to bias in the temperature averages. Temperature can also affect the stock-recruitment process at many 

different stages. At the larval stage, sea surface temperature may impact larval survival by increasing 

larval growth and therefore shortening the length in the water column (Incze and Naimie 2000) and 

decreasing larval vulnerability to predation. At the settlement stage, if waters are above 12°C, 

settlement habitat expands (Steneck and Wahle 2013). Increasing water temperatures also cause 

lobsters to molt more frequently (Comeau and Savoie 2001), which could decrease the lag between 

SSB and recruits, but it could also increase the number of recruits entering the fishery each year, as 

more lobsters are molting. This partially explains why a stock−recruitment relationship was difficult to 

find at a large spatial and temporal scale, such as the whole GOM from 1982−2013. 
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III-5.  Conclusions 

 

The IBLS model results showed that v-notching has a significant positive impact on the GOM 

lobster SSB (33–632% higher with 100% compliance and a strict definition than with 0% compliance) 

regardless of the stock−recruitment assumption and a significant positive impact on landings (33–85% 

times higher with 100% compliance and a strict definition than with 0% compliance) with a stock− 

recruitment relationship. The higher the compliance rate and the stricter the v-notch definition, the 

greater the positive impact on the fishery and population. The stock− recruitment relationship assumed 

in the model can influence the magnitude of the positive effect of v-notching. The framework 

proposed in this study can be extended to evaluate conservation and management measures in other 

fisheries. 

 

 

 

IV. Evaluating impacts of legal sizes on lobster population dynamics 

 

IV-1. Introduction 

 

 It is now widely acknowledged that in fisheries management it is necessary to account for 

both environmental change and human impacts on the population dynamics of a fishery resource 

(Jul-Larsen et al., 2003). There is a growing body of literature exploring environmental impacts 

such as effects of climate change on population productivity or distribution (Brander, 2010). 

However, simulation studies that quantify the contribution of fishery management regulations to 

population dynamics remain scarce (Chavez et al., 2003; Stewart et al., 2016). Management 

strategy evaluation involves using simulation to compare the relative effectiveness of alternative 

management regulations and determine the performance of existing regulations (Punt et al., 2016). 

Fisheries management with efficient conservation regulations can lead to positive development of 

a fishery with increased landings and abundance of a fisheries resource (Worm et al 2009). 

Therefore, simulation studies provide an effective framework for evaluating the trade-offs among 

alternative conservation regulations and for assessing the consequences of uncertainty for 

achieving management goals (Punt et al., 2016). 

 The American lobster (Homarus americanus) fishery is the most commercially important 

fisheries in the United States with a dramatic boom in landings in the Gulf of Maine (GOM) 

since the 1980s (Acheson and Steneck, 1997; Tanaka and Chen, 2016). The dramatic increase in 

landings and abundance have been attributed to changes in the environment such as warming 

temperature, reduced predation, and improved habitat (Wahle et al., 2013; Tanaka and Chen, 2016; 

Pinsky, 2018). In spite of various environmental impacts, effects of conservation measures on the 

lobster population have also been explored. For example, Le Bris et al. (2018) used a simulation 

model to evaluate "what if" scenarios and suggested that about half of the increase in lobster 

abundance can be attributed to the conservation measures. Gendron (2005) has also suggested that 

an increase of 1 mm carapace length per year in minimum legal size would lead to a doubling of 

egg-per-recruit production of American lobsters in the Canadian Magdalen Island after seven years. 

However, some of these studies do not include recruitment variability or the simulation work is 

hard to validate (Sundelof et al., 2014; Pinsky, 2018). The models used in previous simulation may 

not be able to realistically capture lobster population and fisheries dynamics because of the 

complexity in the life history and fishery process (Chen et al., 2005). It is thus necessary to explore 

a more flexible and powerful modeling framework, such as an individual-based model, to more 
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realistically quantify the lobster life history and fishery processes and evaluate different 

conservation measures (Butler, 2003; Chen et al., 2005; ASMFC, 2009; Kanawai et al., 2010; 

Chang et al., 2011). 

 Conservation measures, which have been implemented in the American lobster (Homarus 

americanus) fishery for over 140 years, are likely to have contributed to the dramatic increase in 

the GOM lobster abundance (ASMFC 2015; Le Bris et al., 2018). The most important conservation 

measures include minimum and maximum legal sizes, v-notching (i.e. put a v- shaped notch cut in 

the tail of lobsters) egg-bearing female lobsters, and prohibition on taking egg-bearing or v-notched 

females (Acheson and Gardner, 2011). Minimum and maximum legal sizes are the most common 

conservation measures that set the smallest and largest carapace lengths that a lobster can be legally 

retained if caught (Hill, 1992). The minimum legal size ensures that the lobsters spawn at least 

once in their life span (Acheson and Reidman, 1982). The maximum legal size protects the larger 

and more fecund females. It allows the larger females to spawn more than once and increases the 

numbers of eggs per spawning (Hill, 1992). The lobster population is likely to fluctuate if there is a 

change in minimum or maximum legal size. It is important to quantify the impact of legal sizes on 

the lobster population with size explicit simulation scenarios. 

 The value of implementing minimum legal size in the lobster fishery has been well 

recognized while the effectiveness of maximum legal size on lobster fisheries has been debated for 

years. The ICES Homarus Working Group has shown that an increase in minimum legal size along 

with a decrease in fishing mortality would lead to an increase in stock biomass and reduce the risk 

of fishery-induced recruitment failure (Bennett and Edwards, 1981). However, it is difficult to 

decide how large a stock of breeding females is required for adequate recruitment to the fishery 

since no clear stock-recruitment relationship has been defined in the lobster fishery (Thomas, 1965; 

ASMFC, 2015). Therefore, it is important to apply different stock-recruitment relationships to the 

lobster data and verify how the choice of the stock-recruitment relationship may influence the 

management policy (Bannister and Addison, 1986). 

 This study used an individual-based lobster simulator to assess the impact of current legal 

sizes and potential effects of alternatives on the American lobster population in the GOM. We 

considered four types of stock-recruitment relationships in order to project reasonable variations in 

recruitment after changing legal sizes. We examined 25 different legal size scenarios based on 

combinations of 0, 1, and 2 mm increment and decrement in the current minimum and maximum 

legal sizes. The potential changes in lobster landings, abundance, and size composition in each 

scenario were quantified and evaluated in this study. The developed simulation framework may be 

also suitable for other fisheries with similar conservation measures. 

 

IV-2. Materials and methods  

 

IV-2-1. Individual-based lobster simulator and input data 

 

 We explored specific legal sizes simulation scenarios using an individual-based lobster 

simulator to evaluate alternative management strategies. The individual-based lobster simulator was 

originally described in Chen et al. (2005), ASMFC (2009), and Chang (2015). It models lobsters from 

53 mm to 223+ mm carapace length (CL) in the GOM (Figure 3.1). The simulator mimics the life 

history and fishery processes a lobster experiences. The life history section determines the molt, 

maturity, and egg-bearing conditions of a lobster. It also tracks the lobster through time and 

determines whether it is dead due to natural mortality or it is available to the fishery. A live lobster 

may then be caught by the fishery and landed if it is not v-notched, is not bearing eggs, and is within 
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the legal sizes during the fishery processes. The simulator summarizes landings, abundance, biomass, 

population size composition, spawning stock biomass, and recruitment at each season (Chang, 2015). 

The reference scenario was determined by tuning the simulator to minimize the difference between 

predicted catch and observed catch.   

 

 
 

Figure IV-1. Map of study area and the historical landings and abundance of lobsters from 1982 to 

2013. 

 

 

IV-2-2. Stock-recruitment relationships 

 

 The historical simulation of the lobster population and fishery does not require a defined 

stock-recruitment relationship because we used the recruitment estimates from the stock 

assessment as input data to the simulator. However, the projected recruitment varies by season with 

changes in spawning stock biomass that results from changing the legal sizes. Therefore, a season-

specific stock-recruitment relationship for summer and fall following the stock assessment 

settings was built into the projection function of the simulator. 

 Four types of stock-recruitment relationships were explored in this study and the one that 

produces best fits of recruitment was used for further simulations. These stock-recruitment 

relationships estimate recruitment by season through (1) sampling recruitment from the historical
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recruitment with a coefficient of variation (CV) of 50%, (2) Beverton-Holt model, (3) Ricker 

model, and (4) sampling recruitment from the recruitment distributions at different spawning stock 

biomass levels (Quinn II and Deriso, 1999). The spawning stock biomass and recruits used to 

estimate the relationship were the estimated spawning stock biomass and recruitments from the 

historical simulation of the individual-based lobster simulator. For the type 4 relationship, dividing 

the spawning stock biomass into 6 levels produced the least root mean square error between 

predicted recruitment and the observed recruitment from the simulator. The recruits ranged from 53 

mm to 73 mm CL and they were recruits to the fishery. It takes a lobster an estimated 5 to 7 years 

to grow into this size range, depending on water temperature (ASMFC, 1997; Wahle et al., 2004). 

Therefore, we tried different time lags between stock spawning biomass and recruitment in the 

stock-recruitment relationship assessment. A time lag of 5 years was used for further simulations 

with least disagreement between predicted and observed recruitment. 

where R is the predicted recruitment in each season, N represents normal distribution, HR is the 

historical recruitment from the 2015 stock assessment report, S is the spawning stock biomass, α1 

and α2 represents the number of recruits per spawner at the low number of spawners, β1 and β2 

controls the levels of density dependence and is proportional to fecundity and density-density 

dependent mortality (Quinn II and Deriso, 1999), ε is the error with mean of zero and variance of  

σ2, R1, Ri+1, SD1, and SDi+1 represent the mean recruitment and standard deviation at spawning 

stock biomass level 1 (S1) and i+1 (Si+1), (R/S)6 and SD6 is the recruitment to spawning stock 

biomass ratio and standard deviation at spawning stock biomass level 6 (S6) or above. 

The performances of the four types of stock-recruitment relationships were compared using 

Pearson’s correlation (Li et al., 2017). The performances of type 2 and 3 were further compared 

with the linear regression model that has an assumption of density independence between recruits 

and spawners using ANOVA test (Ogle, 2015). For each type of stock- recruitment relationships, 

we repeat the simulation process 50 times to account for the variability in predicted recruitment. 

We compared the mean of the 50 predicted recruitments with the estimated historical recruitment 

to estimating the performance of different types of stock- recruitment relationships. 

 

IV-2-3. Legal sizes simulation scenarios 

 

 We explored 25 simulation scenarios that included all possible combinations of 5 minimum 

and 5 maximum legal sizes. Each legal size scenario was iterated 50 times. These legal sizes 

represented changes of -2, -1, 0, +1, +2 mm CL on the reference minimum and maximum legal 

sizes respectively. The scenario with no change in minimum and maximum legal sizes was the 

reference scenario. The reference scenario used the minimum (1982-1987: 81 mm CL, 1988: 82 
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mm CL, and 1989-2013: 83 mm CL) and maximum (1982-2013: 127 mm CL) legal sizes from 

the 2015 stock assessment report. Other scenarios used the same values from the reference scenario 

for other parameters besides the minimum and maximum legal size. We summarized the relative 

changes in landings, abundance, and size composition observed from the other scenarios. We used 

an ANOVA test to compare the mean values from 2013 estimates under different scenarios 

and tested the significance of minimum and maximum legal sizes impact on the lobster population. 

 

IV-3. Results 
 

IV-3-1. Stock-recruitment relationships 

 

 The recruitment projected from using different stock-recruitment relationships showed 

various degrees of correlation with the estimated recruitment from the simulated population (Figure 

IV-2). The estimation in summer exhibited less discrepancy with the observations and variations 

compared with the projection in fall (Table IV-1). The usage of the historical recruitment type 

relationship (type 1) produced the highest correlation between estimated and observed 

recruitments. However, the type 1 relationship had a tendency of overfitting the recruitment 

without a functional link to predict recruitment reliably under different management strategies. 

 The predicted recruitment in response to different spawning stock biomass levels (type 

4) yields the second highest correlation. The predictions with Beverton-Holt (type 2) and Ricker 

(type 3) types of relationships showed relatively similar trends. The magnitude of correlation 

between predictions and observations for the type 2 and 3 were lower than other types of 

relationships. The fits of the stock-recruitment relationship from type 2 and 3 were no better than 

the fits from the density independent models according to the ANOVA test (p > 0.05).  

 

 

Table IV-1. Correlation between predicted and observed recruitment using four types of stock- 

recruitment relationships with a five-year lag. 

 

 Summer Fall 

Type 1 0.99 0.99 

Type 2 0.85 0.68 

Type 3 0.85 0.67 

Type 4 0.96 0.83 



 

38 

 

 

 
 

Figure IV-2. Temporal trends of the predicted recruitments from the reference scenario and 

scenarios using four types of stock-recruitment relationship. 

 

 

IV-3-2. Changes in landings, abundance, and size composition 

 

 The 25 legal size scenarios were then explored using the type 4 stock-recruitment 

relationship with a 5-year lag since the type 4 relationship showed a relatively good performance in 

predicting the recruitment. We summarized the simulation results in terms of relative changes in 

landings, abundance, and size composition. 

 

IV-3-3. Landings 

 

 Minimum legal size showed a greater impact on lobster landings than maximum legal size. 

The predicted landings in 2013 were up to 279.92% higher than the reference landings when 

change only happened in minimum legal size (Table IV-2). Given the same minimum legal size, 

the predicted landings showed a similar trend when there was a -2 mm CL change in maximum 

legal size compared with no change in maximum legal size (Figure IV.3). The predicted landings 

from different scenarios showed similar trends over 1982 to 1989 and the variability in predictions 

occurred after 1990. Overall, the predicted landings were lower than the mean of the reference 

landings after 1990 while there was a decrease in minimum legal size and vice versa (Figure IV-3). 

The positive change in landings was greatest in 2013 when there was a 2 mm CL increase in 

minimum legal size. The greatest negative change occurred when there was a 2 mm CL increase in 

maximum legal size and a 2 mm CL decrease in minimum legal size (Table IV-2). For the scenario 

that produced the highest positive change in 2013 landings, the landings experienced a fluctuation 

around the reference landings for the first 7 years and the landings produced only positive changes 

after 1989.
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Figure IV-3. The boxplot of relative change in landings (%) from 50 iterations of 6 legal sizes 

scenarios. The reference value was the mean landings from the scenario with no change in 

minimum and maximum legal sizes. 
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Table IV-2. Relative changes in lobster landings (t) and abundance in 1997 and 2013. 

 

Min Legal Max Legal Landings (%) Abundance (%)  

Size Size 1997 2013 1997 2013 

-2 -2 -15.11 -45.23 -17.74 -47.75 

-1 -2 -11.35 -29.17 -11.51 -30.65 

0 -2 -0.93 12.77 2.02 12.91 

1 -2 7.76 81.28 11.55 92.58 

2 -2 21.56 276.97 32.28 316.34 

-2 -1 -18.68 -44.51 -21.62 -47.81 

-1 -1 -11.53 -30.40 -11.01 -33.16 

0 -1 0.10 0.22 0.65 1.73 

1 -1 10.73 90.03 13.13 93.87 

2 -1 22.52 255.25 32.41 288.91 

-2 0 -13.22 -43.68 -16.27 -46.21 

-1 0 -11.41 -29.06 -12.55 -31.33 

0 0 0.00 0.00 0.00 0.00 

1 0 8.99 89.76 12.30 96.19 

2 0 26.66 279.92 41.63 319.68 

-2 1 -21.52 -45.97 -23.94 -48.39 

-1 1 -6.87 -25.21 -7.63 -27.73 

0 1 0.99 3.63 2.22 4.39 

1 1 10.50 106.60 15.38 117.70 

2 1 21.68 239.09 33.10 263.05 

-2 2 -17.94 -46.29 -20.18 -49.29 

-1 2 -11.21 -31.89 -12.69 -33.63 

0 2 -3.05 -4.41 -2.03 -3.14 

1 2 11.80 96.09 15.88 104.92 

2 2 21.33 251.48 31.46 285.32 

 

 

IV-3-4. Abundance 

 

 The relative change in abundance showed a similar temporal trend compared with the 

relative change in landings (Figure IV-4). The scenario with a 2 mm CL increase in the minimum 

legal size showed the highest positive change in 2013. The scenario with a 2 mm CL increase in 

maximum legal size but a 2 mm CL decrease in minimum legal size produced the most negative 

changes in abundance in 2013. The lobster abundance was more sensitive to changes in 

minimum legal size than maximum legal size. Any increase in minimum legal size leaded to a positive 

change of abundance in 2013 while a decrease in minimum legal size produced negative change in 

abundance. However, given no changes in minimum legal size, the abundance slightly increased with 

decreased maximum legal size. A 1 mm CL increase in maximum legal size resulted in 4.39% 

increase in abundance during 2013 while a 2 mm CL increase leaded to 3.14% decrease in abundance 

(Table IV-2). The impact of changing minimum legal size (p < 2e-16) was significant according to the 

ANOVA test while the maximum legal size (p = 0.36) showed no significant impact on the lobster 

abundance.
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Figure IV-4. Relative changes in abundance (%) from the 25 scenarios compared with the scenario 

with no changes in minimum and maximum legal sizes.
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IV-3-5. Size composition 

 

 Given the same maximum legal size, increasing minimum legal size produced increased 

lobster weight at different size bins (Figure IV-5). There was no clear pattern on changes in size 

composition at a fixed minimum legal size (Figure IV-5). Besides the scenario with a 2 mm CL 

increase in minimum legal size, other scenarios produced comparable size composition under 

different levels of maximum legal size. Under a 2 mm CL increase in minimum legal size scenario, 

the size composition slightly decreased over size bins when there was an increase in maximum 

legal size (Figure IV-5). With a 2 mm CL increase in minimum legal size, a 1 mm CL decrease in 

maximum legal size produced less lobster weight per size bin, but a 2 mm CL decrease in 

maximum legal size could lead to a small increase in the lobster weight per size bin (Figure IV-5). 

 

 

Figure IV-5. The size distribution of population weight (t) at size from 25 simulation scenarios. 
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IV-4. Discussions 

 

 American lobster studies tend to focused on the improvement of understanding 

environmental effects alone on the abundance and distribution of the lobsters, whereas 

quantification on the impact of conservation measures has received relatively less attention until 

recently (Le Bris et al., 2018; Pinsky, 2018). Most of the research has quantified the impact of 

conservation measures based on yield-per-recruitment assessment that lack the consideration of 

recruitment variability, size-dependent mortality, maturity and growth (Sundelof et al., 2014). 

Along with the scarce model simulation and validation, there is little study to evaluate the effect 

of a maximum legal size on the population dynamics when double-gauge regulation is developed for 

the fishery. This study quantifies the impact of both minimum and maximum legal sizes on the 

American lobster fishery in the GOM using simulations. The simulation model was validated by 

comparing predicted and observed catches. The assessment incorporated the recruitment variability by 

consideration of four types of the stock-recruitment relationships. The results derived from this study 

would improve our understanding of the contribution of legal size regulations to the dramatic increase 

of lobster landings and abundance in the GOM. 

 This study has considered recruitment variability when quantifying the impact of legal sizes on 

the lobster population by exploring four different types of stock-recruitment relationships. The 

relationship using sampled recruitments from customized recruitment distribution from different 

spawning stock biomass levels provided the best projection of recruitments. The historical recruitment 

with a large CV could not reveal the variability in recruitment due to the lack of a functional link 

between recruitment and spawning stock. The recruitment does not respond to the variations in 

spawning stock biomass that result from changes in legal sizes because there is no functional link 

between the recruitment and the stock. The classic stock-recruitment models could not fit the 

observations well (Chang et al., 2015). The performance of these classic models is no better than a 

density-independent model. Sampling recruitment from recruitment distributions that developed for 

different spawning stock biomass levels has produced the best predictions in this study. The objective 

of the study has not been to define the stock-recruitment relationship for American lobster, but to use 

simulations to see which stock-recruitment relationship could be applied to the lobster data for further 

management strategy evaluation. Further exploration on estimating the lobster stock-recruitment 

relationship is necessary since the landings are likely to be governed by the shape of the stock- 

recruitment relationship (Bannister and Addison, 1986). 

 It is urgent to quantify the effect of different stock-recruitment relationships on the lobster 

stock assessment so that the population projections under different conservation strategies can be 

carried out accurately. Bannister and Addison (1986) have described how various stock- recruitment 

relationships affect the relation between yield and different management strategies. They have 

suggested that a highly overcompensatory stock-recruitment curve tends to reduce the benefits of 

increasing minimum legal size or of setting a maximum legal size. Chang et al. (2016) has quantified 

the stock-recruitment relationships for American lobsters in the inshore GOM. The recruitment in their 

study is newly settled young-of-year lobster (around 10 mm CL) and they found that the functional 

stock-recruitment relationship could vary by area and spatial scales. The recruitment in this study is 

the recruitment to the fishery and it is an essential component in the lobster stock assessment 

(ASMFC, 2015). A thorough study on estimating the stock-recruitment relationship is vital to 

understand the population dynamics of the lobster and would improve our studies on quantifying the 

impact of different conservation measures on the lobster fishery (Wahle, 2003). 

 The minimum and maximum legal sizes have been implemented in the Gulf of Maine lobster 

fishery with a long history but the strength of their impacts on the lobster population are different. The 
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responses from fishermen showed that 90.4% of the fishermen expect minimum legal size to be very 

effective but the expectation on maximum legal size is lower (Acheson and Gardner, 2011). The 

results from this study further indicate that changes in minimum legal size showed greater influence 

on the lobster landings, abundance, and size composition than changes in maximum legal size. For 

example, at the fixed maximum legal size situations, changes in minimum legal sizes could result in 

almost a three-fold difference in relative changes in 2013 landings. However, given a fixed minimum 

legal size, changes in maximum legal size only produce a lesser difference in relative changes in 

landings. This may be one of the reasons that there were more changes in minimum legal size than in 

maximum legal sizes in the lobster fishery (Acheson and Steneck, 1997). Minimum legal size is 

expected to be more effective for achieving goals such as a doubling egg per recruitment (Gendron 

2014). 

 The effects of minimum and maximum legal sizes on the lobster population are not a one-way 

trip. An increase in minimum legal size may produce increased landings but increasing maximum 

legal size may create a mixed picture. The results from this study suggested that a 1 mm increase in 

maximum legal size with no change in minimum legal size may result in a small increase in landings 

but a 2 mm increase would lead to negative changes in landings. The current maximum legal size 

supports relatively good performance in lobster landing and abundance. To produce large changes in 

lobster landings, abundance, and size distribution, a greater change (e.g. ±5 or ±10 mm CL) in 

maximum legal size may be required. 

 The impact of maximum legal size on the lobster population depends on how it is combined 

with the minimum legal size and other conservation measures. Therefore, this simulation study with 

different combinations of minimum and maximum legal sizes greatly improve our view on the effect 

of maximum legal size on the lobster population in the GOM. However, the views on effectiveness of 

maximum legal size remain controversial. The maximum legal size is developed to protect the large 

lobsters that are particularly valuable not only because they carry more eggs, but also because they can 

extrude eggs twice after a molt (Waddy and Aiken, 1986). However, some observers think the 

maximum legal size is biologically unsound because Massachusetts and New Hampshire do not have 

the maximum legal size measure but still experienced the boom of lobsters in the 1990s (Acheson and 

Steneck, 2011). The results from this study also imply that the lobster population is not sensitive to 1 

or 2 mm CL change in maximum legal size. 

 There is a tendency that the lobster landings increase steadily with a 1 mm CL increase in 

minimum legal size after a very short term loss and a medium term fluctuation (e.g. 13 years). This is 

similar with the real patterns in Maine lobster fishery. The minimum legal size has been increased 1 

mm CL in 1989 (Acheson and Steneck, 1997). The catch per unit effort fluctuated from 1990 to 2007 

but had a two-fold increase from 2007 to 2013 (Steneck et al., 2017). The relatively good match 

between prediction and history highlights the benefits of using the individual-based lobster simulator 

for the management strategy evaluation. The increase in lobster landings and abundance may not be 

only influenced by the increased minimum legal size, but also other conservation measures such as v-

notch practice, no-take egg bearing lobsters, reduced trap limits, and limited entry (Steneck and 

Wahle, 2003; Steneck et al., 2017). Evaluating the effectiveness of these conservation measures would 

greatly improve our understanding of the lobster population dynamics. 

 The quantified impact of minimum and maximum legal size on the lobster population provides 

numerous management implications. The effect of difference in legal sizes by stock area on the lobster 

population may require further exploration, given the climate-change induced changes in lobster 

maturation and growth. The American lobster is managed with different legal sizes by different stock 

areas (ASMFC, 2015). It is necessary to apply the simulation approach developed in this study to 

other areas and to quantify the impact of difference in legal sizes on the lobster population. The 
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difference in legal sizes by stock area would be necessary if the species shows different size at 

maturity by stock area (Hill, 1992). Depending on the size at maturity along the coast, a minimum 

legal size that is lower than the size at maturity may result substantial loss of catch in local fishery. 

 Examinations on impact of different sizes by sex and season may provide us a better 

understanding of the current conservation measures. The minimum and maximum legal sizes in the 

lobster fishery are developed to primarily protect female lobsters (Steneck et al., 2017). Inappropriate 

size measures such as same legal size for both female and male lobsters may induce adverse sex ratio 

in the lobster population. Furthermore, lobsters experience seasonal migration from offshore to 

inshore. There is a need to quantify the impact of legal sizes on the lobster population using a finer 

spatial-temporal resolution (e.g. inshore/offshore- and season- specific legal sizes). 

 In conclusion, current conservation measures, such as minimum and maximum legal sizes, 

have made a great contribution to the dramatic increase in the American lobster fishery in the GOM. 

The effect of minimum legal size is greater than the effect of maximum legal size on the lobster 

landings, abundance, and population weight at sizes. A 2 mm CL increase in minimum legal size with 

no changes in maximum legal size would produce the largest positive relative change in landings in 

2013, but more studies are needed to evaluate climate-induced changes in size at maturity and growth 

(Khalsa et al. in preparation). Further estimation on the effect of different stock- recruitment 

relationship on the lobster population would improve the reliability of the predicted landings, 

abundance, and size distribution. Developing a simulation approach with a finer spatial-temporal 

resolution would further improve our understanding of the legal size effects on the lobster population. 
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Summary 

 

 The stock assessment of American lobster (Homarus americanus) plays an important role 

in managing the fishery in the Gulf of Maine (GOM). Various fishery-dependent and fishery-

independent data are required in the stock assessment to estimate key fisheries parameters that 

define the population dynamics of American lobster. In the 2015 benchmark stock assessment, 

ventless trap survey (VTS) data were included for the first time to provide information about the 

sublegal lobster (carapace length < 83 mm) dynamics. However, the effectiveness of VTS data in 

monitoring sublegal lobsters has not been evaluated and we have little information on whether 

the VTS sampling design can capture sublegal lobster dynamics. The primary goal of this project 

was to evaluate and determine whether the data collected from the Maine VTS provide robust 

estimation of design-based sublegal lobsters abundance index in the inshore GOM. To achieve 

this goal, we conducted the following four-step analysis: (1) estimate and evaluate variations in 

catch rates derived, respectively, from the first, second, and third ventless trap per site; 2) predict 

sublegal lobster population at a high spatial resolution using generalized additive models 

(GAMs); (3) sample the simulated sublegal lobster population following the sampling protocol 

used in the VTS program to derive a simulated VTS abundance index; and 4) compare the 

simulated VTS abundance index with the predicted population abundance index in the simulated 

sublegal lobster population. The spatial scale of the study was defined by the National Marine 

Fisheries Service (NMFS) statistical areas in Maine, areas 511, 512, and 513. The lobster data 

used to develop the GAMs were from the Maine-New Hampshire Inshore Bottom Trawl Survey 

(BTS) from years 2006-2016. The VTS data from 2006-2016 were sourced as the observed VTS 

abundance index. VTS catch rate per trap was considered during the step of sampling the 

simulated sublegal lobster population using the VTS sampling protocol, and the predictive 

variables considered included depth and temperature.  This study suggests that there were no 

significant differences in abundance, sex ratio, and size composition of the juvenile lobsters 

caught by the three traps in a trawl used in a VTS and that the correlation between abundance 

indices from subsampling scenarios and corresponding observed abundance indices were all 

greater than 0.99. We conclude that the VTS provides a robust estimation of sublegal American 

lobster abundance index in the inshore GOM. 
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I. Project  Introduction 

The American lobsteris a bottom-dwelling crustacean distributed along the coast of 

northeastern United States, The Gulf of Maine (GOM) and Georges Bank (GBK) stock yield 

more than 90% of the American lobster (Homarus americanus) harvested in the U.S. (ASMFC, 

2020). More than 96 million pounds of American lobster were landed in Maine in 2020, which 

was worth over $400 million (DMR, 2021). There are an estimated 5,000 license holders, 

accounting for approximately 55% of all commercial fishing licenses held in the state (DMR 

2016). Such dependence on the lobster fishery leaves the coupled natural and human system 

vulnerable to environmental and regulatory changes.  

Studies suggest that the population dynamics of American lobster experience both top-

down (e.g., fishing pressure) and bottom-up (e.g., climate and resources) controls (ASMFC 

2015; Boudreau et al. 2015). For sustainable management of this species, it is critical to (1) 

evaluate the relative importance and synergistic impacts of these environmental drivers, (2) 

maximizing the efficiency and accuracy of the existing stock monitoring and assessment 

program, and (3) to develop the capacity for predicting changes in ecology, biogeography and 

phenology of American lobster which potentially can limit the lobstering grounds in future.  

Climate-driven changes in the GOM ecosystem structure have been identified as a likely 

primary stressor to population dynamics of this species within its whole geographic distribution 

(Dove et al. 2005; Jacobson et al. 2009). The American lobster is an ectothermic species, thus its 

physiology is regulated by the surrounding water temperature (Hamilton et al. 2007). Lobsters 

prefer a thermal range between 12 and 18 °C, and avoid temperatures above 19 °C (Crossin et al. 

1998). Increasing water temperature forces lobsters to use more energy for respiration, leaving 

diminished energy reserves for feeding, growth, immune response, and reproduction and also 

influence the regulation of hormones, specifically those that control the molting cycle (Gilgan 

and Burns 1977; Butler and Taylor 1978; Qadri et al. 2007). The water temperature in GOM has 

increased over the last 40 years (Nye et al. 2009; ASMFC 2015). Sea surface temperature in 

GOM shows an increase of 0.03 °C per year, resulting in a 1 °C increase in the mean temperature 

since 1982 (Mills et al. 2013).  

As the rate of climate change is predicted to accelerate in the future, alongside the 

species’ ongoing distributional shifts (Pinsky et al. 2013), there is a growing need to assess 

changes in lobster distribution and possible impacts of such a change on the existing lobster 

monitoring programs. Under the latest Intergovernmental Panel on Climate Change (IPCC) 

Representative Concentration Pathways (RCP) 8.5 emissions scenario, average bottom 

temperature in Northeast U.S. Continental Shelf system is expected to increase more than 1 °C 

by 2050 (IPCC 2014; NOAA 2015). While the projected increase in bottom temperature in the 

GOM is not expected to exceed the species’ maximum temperature tolerance and may even be 

considered favorable, management uncertainties at the southern limits of the species’ range can 

be addressed through scenario-based analysis (Hare et al. 2012; Shackell et al. 2014, ASFMC 

2015). 

Climate-driven changes in GOM ecosystem structure will likely alter the spatio-temporal 

availability of suitable habitats for the GOM lobster stock (Tanaka and Chen 2016). Warmer 

temperatures are likely to cause lobsters to move toward higher latitudes, deeper water or to 

areas cooled by tidal mixing and exhibit behavioral changes, such as early and more frequent 

molting (Templeman 1936; Fogarty et al. 2007). Consequently, thermal changes in GOM lobster 

habitat may have great impacts on current lobster monitoring (e.g., whether current monitoring 



2 

 

program will still be effective?). This calls for a thorough evaluation of the effectiveness of the 

current monitoring programs in quantifying the dynamics of lobster fisheries in the GOM.  

 The impact of spatio-temporal shifts in lobster distribution resulting from environmental 

changes may decrease the effectiveness of current sampling programs. Effective sampling 

designs provide scientists a representative view of lobster population with limited effort (Cao et 

al. 2014). The data from multiple surveys have been used to calibrate the stock assessment model 

for the lobster population in the GOM (ASMFC 2015). Initially the proposal was developed to 

evaluate ventless trap and trawl survey programs, but we were provided 1/3 level of requested 

funding and was suggested to focus on the evaluation of ventless trap survey because it has not 

be evaluated in previous studies.  Thus, this project evaluates the performance of ventless trap 

survey in capturing sublegal lobster stock dynamics in a changing GOM. 

 

II. Project Objectives 

The overarching goal of this study is to evaluate effectiveness of ventless trap surveys in 

monitoring sublegal lobster stock in a changing Gulf of Maine. The simulation framework 

developed in this study are a continuation of ongoing research in the Chen Lab in collaboration 

with NOAA, ASMFC and Maine Department of Marine Resources (DMR) to improve our 

understanding of how lobster population dynamics may respond to climate changes. 

 

 

Section I. Evaluating the catch rates of different trap positionings in American lobster 

(Homarus americanus) ventless trap survey in the Gulf of Maine 

 

 The American lobster resource is assessed by many surveys. Each survey has its own 

insufficiencies. Atlantic States Marine Fisheries Commission (ASMFC) implemented the 

Ventless Trap Survey (VTS) in 2006 to complement existing survey programs and to better 

capture sublegal lobster abundance dynamics (Watson et al., 2019). Although the 

implementation of the VTS follows a scientifically rigorous approach and rarely encounters 

obstacles in both the natural environment and management, a comprehensive study of the survey 

design and the performance of the VTS in monitoring sublegal lobster abundance is needed. One 

of the most important steps in evaluating the performance of the VTS is to identify the potential 

differences between the individual ventless traps in the same linked trawl. 

 There are common perceptions that positioning of traps in a linked trawl set at a sampling 

site results in different catch rates of lobster because of gear saturation, which would affect the 

estimation of lobster abundance index (Pickering et al., 2010). In this study, we derived a design-

based sublegal lobster (< 83 mm carapace length) abundance index at each of Maine’s National 

Marine Fisheries Service (NMFS) Statistical Areas using the observed VTS data from 2006-

2017. We then derived design-based abundance indices using data from the first, the second, and 

the third ventless trap per site. The correlation between abundance indices from three traps and 

the true abundance index in each statistical area was then examined. Finally, the sex ratio and 

size composition of subsamples were compared with the samples collected from the three traps 

per trip.  

I-1. Materials and Methods  

I-1-1. Study Area and Data Used  
 The data used in this study were from the DMR VTS, which were collected in and 

divided by the NMFS statistical areas 511, 512, and 513 along the Maine coast (Figure I-１). 
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Three depth strata were deployed in the survey—0-20 m, 21-40 m, and 41-60 m. The potential 

sampling station locations are shown in Figure I-１. (Thompson, 2019). 

 

 
Figure I-１. Potential survey station locations in NMFS statistical areas 511, 512, and 513 along 

Maine coast. 

 

 The data sourced from DMR VTS ranged from 2006-2016 with surveys conducted in 

June, July, and August every year. The surveys collect lobster biological data, such as carapace 

length, sex, fecundity, shell status, cull status, and external gross pathology, and survey logistical 

information, such as number of lobsters in each trap, number of traps, trap soak time, trap type, 

and bait type. The detailed number of sampling stations each year were selected randomly (me of 

three days (ASMFC, 2020). 

 

Table I-1), and the target sampling frequency of each station was twice a month with a trap 

soaking time of three days (ASMFC, 2020). 

 

Table I-1. The detailed number of stations selected since 2006 for each depth stratum in 

statistical areas 511, 512, and 513. Note. Reprinted from “ME Survey Design” by Thompson. K, 

2019, Unpublished manuscript. Copyright 2019 by K. Thompson.  

                        Statistical Area  

Depth 

Stratum 

(m) 

511 512 513 Total 

stations 0-20 21-40 41-60 0-20 21-40 41-60 0-20 21-40 41-60 

2006 9 8 8 8 8 9 7 11 6 74 

2007 8 7 8 19 23 19 12 13 14 123 
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2008 8 9 7 23 24 24 14 15 15 139 

2009 9 9 6 25 17 26 15 16 14 137 

2010 8 9 7 23 24 22 13 16 14 138 

2011 8 9 7 25 21 23 14 17 14 138 

2012 7 9 8 23 24 22 14 15 16 138 

2013 8 8 8 22 23 24 15 15 15 138 

2014 8 8 8 22 24 23 15 16 14 138 

2015 16 17 15 47 49 42 30 29 31 276 

2016 16 16 16 46 46 46 30 30 30 276 

2017 16 16 16 45 44 49 30 30 30 276 

 

  

 Before 2015, each trawl included six traps, with three vented traps and three ventless 

traps positioned alternately (Figure I-２). The selectivity difference between vented traps and 

ventless traps can be studied with nine years of data existed. Therefore, to expand the sampling 

area and improve efficiency, only ventless traps were kept in the survey, and thus, starting in 

2015, the number of VTS sample stations were doubled (Courchene & Stokesbury, 2011; 

Thompson, 2019). 

 

 
Figure I-２. Diagram of VTS traps deployment before 2015. Adapted from “ME Survey 

Design,” by Thompson (2019), Unpublished manuscript. 

 

I-1-2. Design-based abundance index  

 When calculating sublegal lobster abundance index with information from the VTS, only 

the data collected by the ventless traps are used. Because the survey months for the VTS are 
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June, July and August, which are also popular months for various agencies to conduct other 

surveys, sometimes the target soaking time (i.e., three days) for the VTS is not met due to lack of 

manpower, overlapping routes, or needs of vessels. However, due to the assumed linear 

relationship between trap soak time and lobster catch, soak time needed to be standardized to 

three days. Therefore, when exploring these data, VTS soak time outliers (i.e., one day and six 

days) were discarded and the rest were used to divide lobster catch number for catch per day, and 

then multiplied by the target soaking time (i.e., three days). The equation is shown as:  

𝐶𝑎𝑡𝑐ℎ =
𝐶𝑎𝑡𝑐ℎ𝑛

𝑡
× 𝑠 

where 𝐶𝑎𝑡𝑐ℎ is the standardized lobster catch per trap, 𝐶𝑎𝑡𝑐ℎ𝑛 is the observed lobster catch per 

trap, 𝑡 is the recorded soak time, and s is the target soaking time.  

 The design-based abundance index in each survey area in a survey season was calculated 

as:  

𝐶𝑎𝑡𝑐ℎ𝑦 =

∑
∑ 𝐶𝑎𝑡𝑐ℎ𝑠,𝑠𝑡𝑟,𝑦𝑠

𝑁𝑠𝑡𝑟,𝑦
× 𝐴𝑠𝑡𝑟𝑠𝑡𝑟

∑ 𝐴𝑠𝑡𝑟𝑠𝑡𝑟
 

where 𝐶𝑎𝑡𝑐ℎ𝑠,𝑠𝑡𝑟,𝑦 is the mean catch at site s in stratum str and year y, 𝑁𝑠𝑡𝑟,𝑦 is the number of 

sites in stratum str and year y, and 𝐴𝑠𝑡𝑟 is the number of sites in stratum str.  

 The abundance index variance was calculated as: 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =

∑ 𝐴𝑠𝑡𝑟 × (𝐴𝑠𝑡𝑟 − 𝑁𝑠𝑡𝑟,𝑦) × (
(∑ 𝑆𝑢𝑏𝐴𝐷,𝑦𝐴𝐷 /(𝑁𝑠𝑡𝑟,𝑦 − 1))

𝑁𝑠𝑡𝑟,𝑦
)𝑠𝑡𝑟

𝐴𝑡𝑜𝑡𝑎𝑙
2  

Where 𝐴𝑠𝑡𝑟 is the area of stratum str,  𝐴𝑡𝑜𝑡𝑎𝑙 is the area of the sum of all strata,  𝑁𝑠𝑡𝑟,𝑦 is the 

number of sites in stratum str and year y, and 𝑆𝑢𝑏𝐴𝐷,𝑦 is the mean catch in each area designation 

in year y.  

 The mean catch in each area designation was calculated as: 

𝑆𝑢𝑏𝐴𝐷 = (
𝐶𝑎𝑡𝑐ℎ𝑠𝑡𝑟,𝑦

𝑛𝑠𝑡𝑟,𝑦
−

𝐶𝑎𝑡𝑐ℎ𝐴𝐷,𝑠𝑡𝑟,𝑦

𝑛𝐴𝐷,𝑠𝑡𝑟,𝑦
)2 

Where 𝐶𝑎𝑡𝑐ℎ𝑠𝑡𝑟,𝑦 is the mean catch at stratum str and year y, 𝑛𝑠𝑡𝑟,𝑦 is the number of traps 

deployed in stratum str and year y, 𝐶𝑎𝑡𝑐ℎ𝐴𝐷,𝑠𝑡𝑟,𝑦 is the mean catch in each area designation in 

stratum str and year y, and 𝑛𝐴𝐷,𝑠𝑡𝑟,𝑦 is the number of traps deployed in each area designation in 

stratum str and year y. 

 The sampling area in each depth stratum in a statistical area is shown in Table I-2 

(ASMFC, 2020). 

 

Table I-2. The number of sites sampled in each depth stratum in a statistical area. 

 Depth stratum 1 

(0-20m) 

Depth stratum 2 

(21-40m) 

Depth stratum 3 

(41-60m) 

Total 

SA511 122 82 92 296 

SA512 566 395 420 1381 

SA513 315 338 198 851 

 

I-1-3. Subsampling  

 The three ventless traps deployed at a site might have different catch rates due to their 

unique positioning, and therefore different abundance indices. In order to evaluate this 



6 

 

hypothesis, we calculated the abundance index of sublegal lobster (carapace length < 83 mm) for 

the first, second, and third trap individually, as well as the correlation of each trap’s abundance 

index to the sublegal lobster abundance index derived from the three traps combined. 

 The abundance index of a trap in a statistical area was calculated as: 

𝐶𝑎𝑡𝑐ℎ𝑇,𝑠𝑎,𝑦 =

𝐴𝑠𝑎,𝑠𝑡𝑟 × ∑
∑ 𝐶𝑎𝑡𝑐ℎ𝑇,𝑦,𝑠𝑎,𝑠𝑡𝑟,𝑇

𝑛𝑇,𝑦,𝑠𝑎,𝑠𝑡𝑟
𝑠𝑡𝑟

∑ 𝐴𝑠𝑎𝑠𝑡𝑟
 

where 𝐴𝑠𝑎,𝑠𝑡𝑟 is the area of stratum str in statistical area sa,  𝐴𝑠𝑎 is the area of the sum of all 

sampling stations in statistical area sa, 𝐶𝑎𝑡𝑐ℎ𝑇,𝑦,𝑠𝑎,𝑠𝑡𝑟 is the mean catch by trap T in stratum str 

in statistical area sa and year y, and 𝑛𝑇,𝑦,𝑠𝑎,𝑠𝑡𝑟 is the number of traps T in stratum str, statistical 

area sa and year.  

 The abundance index variance of a trap was calculated as: 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑇 =

∑ 𝐴𝑠𝑡𝑟,𝑠𝑎,𝑦 × (𝐴𝑠𝑡𝑟,𝑠𝑎,𝑦 − 𝑁𝑠𝑡𝑟,𝑠𝑎,𝑦) × (
(∑ 𝑆𝑢𝑏𝑇,𝑠,𝑦𝑠 /𝑁𝑠𝑡𝑟,𝑠𝑎,𝑦)

𝑁𝑠𝑡𝑟,𝑠𝑎,𝑦
)𝑠𝑡𝑟

𝐴𝑠𝑎
2

 

where 𝐴𝑠𝑡𝑟,𝑠𝑎,𝑦 is the area of stratum str in statistical area sa and year y,  𝐴𝑠𝑎 is the area of the 

sum of all surveys area in statistical area sa,  𝑁𝑠𝑡𝑟,𝑠𝑎,𝑦 is the number of sites in stratum str in 

statistical area sa and year y, and 𝑆𝑢𝑏𝑇,𝑠,𝑦 is the mean catch at site s by trap T in year y.  

 The mean catch in site s by trap T in year y was calculated as: 

𝑆𝑢𝑏𝑇,𝑠,𝑦 = (
𝐶𝑎𝑡𝑐ℎ𝑇,𝑠𝑡𝑟,𝑠𝑎,𝑦

𝑛𝑇,𝑠𝑡𝑟,𝑠𝑎,𝑦
−

𝐶𝑎𝑡𝑐ℎ𝑇,𝑠,𝑠𝑡𝑟,𝑠𝑎,𝑦

𝑛𝑇,𝑠,𝑠𝑡𝑟,𝑠𝑎,𝑦
)2 

where 𝐶𝑎𝑡𝑐ℎ𝑇,𝑠𝑡𝑟,𝑠𝑎,𝑦 is the mean catch at stratum str caught by trap T in statistical area sa and 

year y, 𝑛𝑇,𝑠𝑡𝑟,𝑠𝑎,𝑦 is the number of trap T deployed in stratum str in statistical area sa and year y, 

𝐶𝑎𝑡𝑐ℎ𝑇,𝑠,𝑠𝑡𝑟,𝑠𝑎,𝑦 is the mean catch by trap T in site s in stratum str in statistical area sa and year y, 

and 𝑛𝑇,𝑠,𝑠𝑡𝑟,𝑠𝑎,𝑦 is the number of trap T deployed in site s in stratum str in statistical area sa and 

year y.  

 The calculations of abundance index and variance for each statistical area were similar to 

the calculation used for each trap but included data from all three traps combined.  

 

I-1-4. Sex ratio and size composition  

 The sex ratio of sublegal lobster caught in trap 1, trap 2, and trap 3 were calculated, as 

well as the sex ratio calculated using data from all three traps combined. The female ratios were 

calculated as the number of female sublegal lobsters caught by trap T divided by all sublegal 

lobsters caught by trap T times 100. The male ratios for trap T were calculated as 100-female 

ratio. The size composition was generated by assigning the VTS mean catch per trap of lobsters 

by 20 mm carapace length size bins. The size bins are intercepted at the 85 mm size bin as the 

threshold of sublegal lobster carapace length is 83 mm. 

I-1-5. Statistical analysis  
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 To determinate if there are any differences related to trap positionings in sublegal lobster 

catch between all three traps 

combined and trap 1, trap 2, 

and trap 3 respectively, a 

one-way ANOVA was 

applied.  

 

I-2. Results 

I-2-2. Abundance indices 

 The derived 

abundance indices from one 

trap per site showed a similar 

trend compared to the 

abundance indices derived 

from all three traps per site ( 

 

Figure I-３). The correlation 

between abundance indices 

from subsampling scenarios 

and corresponding true 

abundance indices are all 

greater than 0.99 (Table I-3). 

 

 

 

Figure I-３. Abundance 

indices of sublegal lobsters 

caught by the first (A), 

second (B), and third trap (C) 

compared to abundance 

indices of sublegal lobsters 

caught by all three traps combined in statistical areas 511, 512, and 513 from right to left, 

respectively from 2006 to 2017. 

 

Table I-3. The correlation between the abundance indices calculated using all three traps in each 

statistical area and the abundance indices calculated for trap 1, trap 2, and trap 3 from all 

statistical area individually. 

 SA511 

All three traps 

SA512 

All three traps 

SA513 

All three traps 

Trap 1 0.995614 0.9984942 0.986705 

Trap 2 0.9970937 0.9970475 0.9950832 

Trap 3 0.996536 0.99563 0.9910384 

 

I-2-2. Sex ratio  

 The sex ratio between female and male sublegal lobsters obtained from all three traps per 

site showed similar trends to samples collected from one trap per site ( 

A 

C 

B 

A A 

B 

B 

C 
C 
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Figure I-４). The sex ratio remained stable over time, slightly skewed to females. 

 

Figure I-４. Sex ratio of sublegal lobsters derived from all three traps per site combined (A) and 

from the first trap per site (B), second trap per site (C), and third trap per site (D). 

 

I-2-3. Size composition 

The size composition of sublegal lobsters showed nearly identical patterns when using data 

collected from all three traps per site combined and data from only one trap per site (Figure 

I-５). The results from this study indicated that the positions of traps hauled from a linked set did 

not appear to result in much variation in sublegal lobster catch rates.  

 

I-2-4. The differences of catch 

Examining the mean catch between all three traps combined and trap 1, trap 2, and trap 3, the 

one-way ANOVAs results showed no significant difference (Table I-4).  
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Table I-4. The p-value resulted from ANOVAs between the mean catch calculated using all three 

traps in each statistical area and the mean catch calculated for trap 1, trap 2, and trap 3 from all 

statistical area individually. 

 SA511 

All three traps 

SA512 

All three traps 

SA513 

All three traps 

Trap 1 0.982034392 0.994855382 0.917681136 

Trap 2 0.934157133 0.967874803 0.905698655 

Trap 3 0.898878934 0.948007084 0.993623784 

 

 

 

 

Figure I-５. Size composition of sublegal lobsters derived from all three traps per site combined, 

and from the first (A), second (B), and third (C) trap per site individually from 2006-2017. 

 

 

I-3. Discussion 

 Incorporating VTS data into the American lobster stock assessment is becoming more 

and more important due to its significance on investigating sublegal lobster population 

A 

C 

B 
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distribution, making it vital to evaluate if or how the settings of traps in the survey influence 

sublegal lobster abundance estimates. An improved understanding of how trap positioning in the 

VTS affects catch rate would greatly reduce the risk of misrepresenting data related to stock 

assessment. In this study, we compared the abundance, sex ratio, and size composition of 

sublegal lobsters caught in the three traps used in the sampling design of the VTS. 

 The results from this study showed that subsampling from the first, second, or third trap 

per site produced similar abundance indices, sex ratios, and size compositions of sublegal 

lobsters in the inshore GOM when compared to those metrics derived using data collected from 

all three traps per site combined. In 2007, Pickering et al. (2010) conducted a field study to 

investigate the catch differences between individual commercial lobster traps set in a trawl and 

found similar results. They set up four-trap trawls in Malpeque Bay (Prince Edward Island, 

Canada), with 14.6 m between traps, and 944 traps were hauled daily over four consecutive 

weeks. In weeks two and four, each second trawl was fitted with an intermediate buoy designed 

to reduce the wind-driven fluctuation of the first trap. They found no significant differences or 

relationships in these analyses (Pickering et al., 2010), and therefore, the positioning of 

commercial lobster traps and the wind speed may not affect the catch rate.  

 We found similar results in this study with the ventless lobster traps such that no 

significant differences were found between trap 1, trap 2, and trap 3, or when each trap was 

individually compared to metrics calculated using all three traps combined. This indicates that 

different positionings of ventless traps at VTS sites result in similar sublegal lobster catch rates, 

and subsequently do not affect the estimation of sublegal lobster abundance index. The result 

suggests that the ventless traps deployed in each VTS site can be reduced and resources and 

efforts can be shifted to increase survey sites and expand survey depth to cover more survey 

area. This would enhance the understanding of sublegal American lobster population dynamics, 

which is especially important in the context that catch rate offshore can be largely impacted by 

the change of temperature resulted by climate changing. Reducing ventless traps in VTS sites 

can also reduce the risk of misrepresenting data since the amount of data demanded can be 

lessened.  

 

Section II. Simulation and comparison: sublegal American lobster population dynamics in 

the inshore Gulf of Maine and the effectiveness of ventless trap survey quantifying sublegal 

lobster abundance 

 The stock assessments have relied heavily on fishery-dependent at-sea sampling data, as 

well as data from fishery-independent trawl surveys and SCUBA-based air-lift suction sampling 

(ASMFC 2000, 2006, 2009, 2015 and 2020). In 2015, data from a new gear type and survey, the 

ventless trap survey (VTS), were included for the first time in the stock assessment. The data 

from the VTS provides information on sublegal sized lobsters (i.e., < 83 mm carapace length), 

but its effectiveness of monitoring sublegal lobsters has not been evaluated (ASMFC, 2015).  

 The data from fishery-dependent and fishery-independent monitoring programs provide 

valuable information for the lobster stock assessment, but each program has its own unique 

advantages and disadvantages in monitoring lobster populations (Courchene and Stokesbury, 

2011). The fishery-dependent at-sea sampling data provide catch, fishing effort, size, weight, 

fecundity, and discard information of commercial catch for the stock assessment, but it may have 

biases associated with the non-random nature of selected traps (Scheirer et al., 2004; Comeau et 

al., 2009; Li et al., 2019). The data from bottom trawl surveys have been used to provide indices 

of relative lobster abundance in the stock assessment. The trawl gears, however, are not suitable 
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for surveying areas with rocky bottoms, which are the preferred habitat for lobsters, and are not 

suitable for highly productive areas of the fishery with existing lobster traps (Smith and 

Tremblay, 2003; Henry et al., 2020). SCUBA-based air-lift suction sampling collects important 

young-of-year lobster data and provides future recruitment information, but it is difficult to dive 

and collect data from deeper water if the depth range of young-of-year lobsters expands (Smith 

and Tremblay, 2003; Wahle et al., 2012). To supplement data collected from existing monitoring 

programs and describe important sublegal lobster populations, the Atlantic States Marine 

Fisheries Commission (ASMFC) developed the coast wide VTS in 2006 (Watson et al., 2019).  

 An increasing number of field studies have examined the performance of VTS in 

capturing lobster size composition and abundance compared with other monitoring programs 

(Clark et al., 2015). Recently, several efforts have been made for understanding the catch rates 

and saturation of ventless traps (Tremblay 2006; Clark et al., 2018; Watson et al., 2019). 

However, rigorous evaluation of the VTS sampling design on capturing sublegal lobsters’ 

abundance through a simulation approach remains scarce. Such work requires comprehensive 

evaluation with a wide temporal-spatial range and high resolution of observed data collected 

from the VTS. 

 The primary goal of this study was to determine if the data collected from the Maine VTS 

provides robust estimation of a design-based sublegal lobster abundance index in the inshore 

GOM. In order to accomplish the goal, we compared the estimated VTS abundance index with 

the “true” abundance index from simulated sublegal lobster populations. The spatial distribution 

of sublegal lobsters from June to August was simulated by a generalized additive model (GAM) 

to provide the “true” abundance index using the 2006-2016 Maine/New Hampshire inshore 

bottom trawl survey (BTS) and environmental data. The GAM-simulated population was then 

used to evaluate the effectiveness of the VTS design when estimating sublegal lobster abundance 

indices. The “estimated” VTS abundance indices per National Marine Fisheries (NMFS) 

statistical area in Maine were derived by modeling the VTS sampling process based on the 

simulated population. By detecting the correlations between these abundance indices generated 

by different strategies, we evaluated the reliability of the VTS survey, and thus endorse its 

importance in the American lobster stock assessment.  

 

II-1. Materials and Methods  

 

II-1-1. Study Area and Data Used  

 The data used to develop GAMs to predict the sublegal lobster population were sourced 

from the 2006-2016 BTS data. The strata in the BTS were aggregated from five longitudinal 

regions and four depth strata (Figure II-６). However, in order to match the spatial divisions of 

the VTS, we assigned the BTS data to their correspoding NMFS Statistcal Area in Maine, either 

511, 512, or 513 (Figure II-2).  
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Figure II-６. The map of Maine/New Hampshire Inshore Bottom Trawl Survey with four depth 

strata and five latitudinal regions sampled in Maine. 

 
Figure II-７. The map of Maine/New Hampshire Inshore Bottom Trawl Survey with four depth 

strata and three NMFS statistical areas for Maine. 

 

 For the observed VTS abundance indices, the data were sourced from the 2006-2016 

Maine VTS, which was conducted every summer (i.e., June, July, and August). The survey used 
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a random stratified sampling design based on depth and the NMFS statistical area (i.e., 511, 512, 

and 513). The three depth strata (i.e., 0-20 m, 21-41 m, and 41-60 m) of interest were defined 

based on the range of depths in which sublegal lobsters are commonly fished in inshore waters. 

Potential sampling stations were generated along a one-minute latitude and longitude grid. 

 The June to August bottom water temperature data and bottom water salinity data from 

2006-2016 used for prediction were obtained from the Finite-Volume Community Ocean Model 

(FVCOM), which was created by the Marine Ecosystems Dynamics Modeling Laboratory at the 

University of Massachusetts-Dartmouth. The unstructured grid used by FVCOM provides it the 

ability to depict complex sea topography and coastal regions (Chen et al., 2006; Li et al., 2017). 

 

II-1-2. Model development  

 The spatial distribution of sublegal lobsters from June to August is influenced by many 

biotic and abiotic factors (Steneck and Wahle, 2013; Boudreau et al., 2015). A generalized 

additive model (GAM) with a Tweedie distribution has been recommended and widely used to 

quantify the relationships between lobsters and environmental variables in the inshore GOM 

(Chang et al., 2010; Tanaka et al., 2019). A GAM can be considered as in the middle range 

between linear models and machine learning models—a good balance between flexibility and 

interpretability (Hastie & Tibshirani, 1987, 1990). GAMs can be fit to spline functions to predict 

complex relationships with a relatively understandable method (Yee & Mitchel, 1991; Wood, 

2017). In addition to a link function that builds the connection between dependent and 

independent variables, a smooth function is applied upon each independent variable, allowing the 

relationship between the dependent variable and the smoothed independent variables to be 

flexible, and thus to avoid over- or under-fitting and leading to better predictions. Generally, the 

determination of independent variables is estimated by a penalized regression method when 

building the model where all potential independent variables are included but adjusted according 

to their significance (if the p-value < 0.05, the variable is remained) or the model’s Akaike’s 

information criterion and deviance explained (Zuur et al., 2009; Wood, 2017; Liu et al., 2019). 

We used a GAM model with a Tweedie distribution to estimate lobster density and to predict 

sublegal lobster population at a high spatial resolution. Here, the predictor variables used in the 

GAM that had significant p-values included longitude, latitude, depth, and bottom water 

temperature. 

 The data used to develop a GAM are from the BTS survey (2006-2016). There are no 

fishery-independent surveys that have been conducted in summer with a wide spatial coverage in 

the inshore waters, and the best available data we could use are these BTS data. The density of 

sublegal lobsters per trawl, along with the trawl position and other environmental data (i.e., depth 

and bottom water temperature) were used in the GAM. In order to find the best combination of 

data to predict sublegal lobster population and also to account for the spatially varied 

relationships between lobster density and environmental variables, a series of data with different 

temporal and spatial ranges was used to build GAM models. We then compared these GAM 

predicted population indices with the observed BTS abundance indices. The predicted population 

with the strongest correlation to the observed BTS abundance indices were using June and Fall 

BTS data and the spatial ranges were classified by statistical areas (511, 512, and 513).  

 The design-based BTS and VTS abundance index of a year was calculated as: 

𝐶𝑎𝑡𝑐ℎ𝑦 =

𝐴𝑠𝑡𝑟 × ∑
∑ 𝐶𝑎𝑡𝑐ℎ𝑠,𝑦,𝑠𝑡𝑟𝑠

𝑁𝑦,𝑠𝑡𝑟
𝑠𝑡𝑟

∑ 𝐴𝑠𝑡𝑟𝑠𝑡𝑟
 



14 

 

Where 𝐴𝑠𝑡𝑟 is the area of stratum str,  𝐶𝑎𝑡𝑐ℎ𝑠,𝑦,𝑠𝑡𝑟 is the mean catch in site s in stratum str and 

year y, and 𝑁𝑦,𝑠𝑡𝑟 is the number of traps sites in stratum str and year.   

The general GAM formulation to estimate sublegal American lobster (size < 83mm) abundance 

in each statistical area was expressed as: 

𝐶𝑎𝑡𝑐ℎ𝑆𝐴 = s(depth)+s(temperature)+s(latitude)+s(longitude) 

where s is the spline smoother.    

 We predicted the sublegal lobster population in the inshore GOM at a higher spatial 

resolution with quantified relationships between lobster densities and environment from the 

GAM. The FVCOM produced bottom water temperature and salinity data. However, the 

FVCOM data stopped in 2017 and a different mesh was used in 2017. Thus, in order to limit 

uncertainty, our prediction ranged from 2006-2016. We then modeled the VTS sampling process 

based on the predicted population. During the modeling process, we also considered the catch 

rate of VTS traps when estimating the catch of lobsters per trap at each station. The catch rate 

was assumed related to monthly water temperature (i.e., June, July, and August temperatures 

from 2003-2016) and depth. The catch rate per station was calculated as follow:  

𝑞
𝑇,𝐷

=
1

𝑛
∑

𝐶𝑖,𝑇,𝐷

𝑆𝑖,𝑇,𝐷

𝑛

𝑖=1

 

where T is the monthly mean temperature classes obtained from FVCOM at VTS sampling 

areas; D is the depth classes (1-20m, 21-40m, and 41-60m); 𝑞
𝑇,𝐷

is the mean catch rate per 

temperature and depth class; n is the number of sampling sites at a specific temperature and 

depth class; 𝐶𝑖,𝑇,𝐷 is observed real number of lobsters per ventless trap at site i, temperature class 

T, and depth class D; and 𝑆𝑖,𝑇,𝐷 is simulated lobsters per site i within a temperature class T and 

depth class D. Mean catch rate was assigned to each VTS site (𝑞
𝑖,𝑇,𝐷

) based on the real 

temperature and depth at each VTS site. The simulated numbers of lobsters caught per ventless 

trap with consideration of catch rate (𝐶′
𝑖,𝑇,𝐷) was calculated as: 

𝐶′
𝑖,𝑇,𝐷 = 𝑞

𝑖,𝑇,𝐷
× 𝑆𝑖,𝑇,𝐷 

The simulated abundance indices per statistical area based on the predicted population were 

derived from VTS catch with and without consideration of catch rate respectively. These 

abundance indices were also compared with the trend of the predicted population. 

 The population abundance indices were normalized based on the equation below: 

𝑧𝑖=

𝐶𝑖 − 𝑚𝑖𝑛(𝐶)

𝑚𝑎𝑥(𝐶) − 𝑚𝑖𝑛(𝐶)
 

where C = (𝐶2006,…, 𝐶2016) is the population abundance indices from 2006 to 2016, and 𝑧𝑖 is the 

𝑖𝑡ℎ normalized population index. 

 

II-2. Results 

II-2-1. GAMs result 

 The GAMs resulted in reasonable fitting performances. The final and significant 

predictor variables included in the GAMs for the three different statistical areas were the same 

and included longitude, latitude, depth, and bottom water temperature. The deviance explained 

by the GAMs was 56.2%, 48.2%, and 75.8% for statistical areas 511, 512, and 513, respectively. 

 

II-2-2. VTS Simulation  
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 The calculated catch rate (dividing the observed number of lobsters per trap by simulated 

lobsters per trap in the same depth and temperature class) of sublegal lobsters (Table II-5) varied 

by monthly temperature classes and depth stratum. The calculated mean catch rate for a specific 

temperature and depth class ranged from 0.03 to 0.22. The mean monthly bottom temperature 

classes ranged from 7.41 to 12.89 °C. Catch rate is generally higher in depth class 1-20m 

compared to depth class 21-40m and depth class 41-60m. The trendlines in three depth classes 

show that the catch rate is decreasing while the temperature increases (Figure II-3; Figure II-4). 

 

Table II-5. Mean simulated catch rate within temperature and depth classes. 

Temperature Class 
Depth Class 

(1-20m) 

Depth Class 

(21-40m) 

Depth Class 

(41-60m) 

7.41 0.165229 0.203397 0.130009 

8.32 0.177642 0.11234 0.119457 

8.38 0.157372 0.0986 0.105305 

8.6 0.146586 0.097894 0.115344 

8.65 0.186053 0.15436 0.150728 

8.68 0.186616 0.156801 0.162654 

8.71 0.214351 0.124656 0.13334 

8.81 0.156143 0.111592 0.066976 

9.1 0.143041 0.100969 0.067175 

9.48 0.19501 0.139526 0.154656 

9.66 0.13522 0.081533 0.070784 

9.84 0.130875 0.114986 0.103069 

10 0.12628 0.064078 0.060372 

10.19 0.125102 0.102981 0.132579 

10.28 0.195167 0.12077 0.127152 

10.84 0.115887 0.072516 0.037574 

11.07 0.2068 0.099733 0.091975 

11.09 0.118871 0.056421 0.064739 

11.12 0.081903 0.091893 0.072815 
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11.28 0.178303 0.084968 0.074344 

11.45 0.122053 0.035875 0.037184 

11.5 0.123813 0.042738 0.036075 

11.68 0.160801 0.053865 0.06724 

11.98 0.109726 0.066764 0.051355 

12.31 0.130854 0.0568 0.045478 

12.76 0.193038 0.05418 0.029098 

12.89 0.100833 0.064087 0.064087 

 

 
Figure II-８.  Catch rate changes over depth stratum 1-20 (m), 21-40 (m), and 41-60 (m). 

 

 
Figure II-９.  Catch rate changes over annual mean water temperature (°C). 
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 The predicted population index, simulated VTS index, the observed VTS abundance 

index, and the simulated VTS index with the consideration of catch rate all fluctuated largely 

from 2006-2016 with a generally increasing trend until after the year 2012 when there was 

dramatic decline in all the statistical areas (Figures II-5, 306). The abundance indices in 

statistical areas 511, 512 and 513 bounced back after the huge decline. The observed VTS is 

more overlapped with the simulated VTS index with the consideration of catch rate (similar 

increasing and decreasing tendency) than the simulated VTS index without the consideration of 

catch rate (Figure II-6). After considering the catch rate in the simulation work, the correlation 

between simulated VTS abundance indices and observed VTS abundance indices improved by 

0.26, 0.26, and 0.64 at statistical areas 511, 512, and 513, respectively (Table II-6). The predicted 

population index is more overlapped with the simulated VTS index without the consideration of 

catch rate (nearly identical increasing and decreasing tendency in statistical areas 511, 512, and 

513 after year 2011) than the simulated VTS index with the consideration of catch rate (Figure 

II-5). The correlation between predicted population indices and simulated VTS population 

abundance indices was 0.92, 0.98, 0.84 for statistical areas 511, 512, and 513, respectively. The 

correlation between predicted population indices and simulated VTS abundance indices with 

considerations of catch rate was 0.84, 0.73, and 0.39 for statistical areas 511, 512, and 513, 

respectively (Table II-6). The correlation results indicated that there was a discrepancy between 

simulated VTS abundance indices with consideration of catch rate and the predicted population 

indices (Error! Reference source not found.). The correlation coefficients between observed 

VTS and BTS abundance index were 0.82, 0.70, and 0.67 (Table II-6) in statistical areas 511, 

512, and 513 respectively. The trend is shown in Error! Reference source not found. that 

although the general tendency increased until 2012 followed by a decrease in abundance index 

and a reboot afterward, the two indices have seldom overlapped.  

 

 
Figure II-１０. The relationship between the normalized predicted population index, which is the 

purple line with circle symbol, simulated VTS index, which is the blue line with triangle symbol, 

and simulated VTS index with the consideration of catch rate, which is the yellow line with the 

cross symbol for statistical areas 511, 512, and 513 from 2006 to 2016.  
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Figure II-１１. The relationship between the normalized observed VTS abundance index, which 

is the black line with circle symbol, simulated VTS index, which is the blue line with the triangle 

symbol, and simulated VTS index with the consideration of catch rate, which is the yellow line 

with the cross symbol for statistical areas 511, 512, and 513.  

 

Figure II-１２. The relationship between normalized observed VTS abundance index which is 

the black line with circle symbol and normalized observed BTS abundance index which is the 

purple line with the triangle symbol for statistical areas 511, 512, and 513. 

 

Table II-6.  Correlations of various indices calculated in the study across statistical areas 511, 

512, and 513. The comparison column states which indices and under which circumstances (i.e., 

whether or not catch rate was considered) were compared for each statistical area. 

Comparison Statistical area 

511 

Statistical area 

512 

Statistical area 

513 

Observed VTS population index/ Simulated 

VTS index 

0.61 0.46 0.23 

Observed population index/ Simulated VTS 

index with catch rate 

0.87 0.72 0.87 
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Predicted population index/ Simulated VTS 

index 

0.92 0.98 0.84 

Predicted population index/ Simulated VTS 

index with catch rate 

0.84 0.73 0.39 

Observed BTS abundance index/ Observed 

VTS abundance index 

0.81 0.69 0.76 

Observed BTS abundance index/ Simulated 

VTS index 

0.63 0.61 -0.05 

Observed BTS abundance index/ Simulated 

VTS index with catch rate 

0.90 0.84 0.79 

 

 

II-3. Discussion  

 In this study, we quantified the evaluation of the VTS sampling design on the 

performance of capturing sublegal American lobster abundance in the GOM. GAMs were 

developed to predict the sublegal lobster population in a high spatial resolution. A simulated 

VTS abundance index based on the predicted population with and without the consideration of 

VTS trap catch rate were compared to the predicted population index. Strong correlations were 

detected between the comparisons, indicating that the current sampling design of the VTS is able 

to produce a robust abundance index of sublegal lobsters in the inshore GOM. 

 However, although the correlation coefficients of observed BTS and VTS abundance 

indices showed strong correlations, there is little overlap in the timing of the BTS and the VTS 

sampling periods. Additionally, the BTS survey is sequentially conducted from southwest to 

northeast while the VTS survey is conducted in all survey areas during the same time period. 

Therefore, uncertainty exists when using BTS data to test the effectiveness of VTS sublegal 

lobster abundance. The introduction of catch to ventless traps during the step of sampling the 

predicted lobster population using the VTS program sampling protocol helped rectify the 

availability of lobsters to a ventless trap.  

 Considering catch rate of ventless traps in the sampling process reproduces population 

indices that fit observed VTS abundance indices better. Nevertheless, the simulated VTS 

abundance indices with consideration of catch rate show lower correlation with predicted 

population abundance indices using BTS data compared with the situation that no catch rate was 

considered. These findings showed that it is difficult to incorporate catch rate into the analysis 

and much remains unknown about the factor that could affect the catch rate of ventless traps. 

Both density-dependent and density-independent factors could affect the probability of sublegal 

lobsters encountering and being caught by a ventless trap. For example, catch rates of a ventless 

trap could increase with substrate complexity and decrease when temperature is high (Clark et 

al., 2015). Although the trap soak time was standardized to three days in the VTS (ASMFC, 

2020), a plateau in lobster catch may also occur 24 hours after the VTS traps are deployed. This 

could lead to a reduction of catch rate as lobsters accumulate in traps, inhibiting entry of 

additional lobsters and accelerating escapements. The loss of bait attractiveness could also 
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reduce catch rates (Watson et al., 2019). Given the discrepancy between the simulated VTS 

abundance indices with consideration of catch rate and the predicted population indices, it is 

urgent to have more studies to understand how catch rate of ventless traps changes over time and 

space. With a better understanding of the factors that could affect the catch of lobsters using 

ventless traps, the stock assessment of American lobster could be improved by incorporating the 

catch rate information in the estimation. 

 Although the uncertainty of catch rate makes the study difficult to simulate VTS 

abundance index of sublegal lobsters, the similar trend between predicted population index and 

the simulated VTS abundance index without consideration of catch rate verified that the 

stratified random sampling design helps produce robust estimates of American lobster population 

abundance index. Smith and Tremblay (2003) also suggested that stratified random design of the 

VTS is more efficient than other sampling designs. The stratified random design helps reduce 

10-31% variance of the stratified mean compared with a simple random design (Smith and 

Tremblay, 2003). It is important to understand changes in catch rate and the movement of 

lobsters in response to changes in the environment to improve the precision of abundance 

estimates. 
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Background 

 

American lobster currently supports the most valuable single species fishery in the United 

States (NOAA 2019).  Maine lobstermen harvest most of these landings, and the fishery 

represents over 79% of the value of all marine commercial fishery landings in the state (ME 

DMR 2020).  Processing and sales of lobsters, as well as industries that support the lobster 

fishery, add further value to the economy.  This income is important statewide and is central to 

the economies of many small coastal communities.   

The Maine lobster fishery is situated within a rapidly changing ecosystem.  The Gulf of 

Maine has been warming rapidly over the past 30 years, and particularly in the past decade 

(Pershing et al. 2015), and this warming trend was punctuated by ocean heat waves throughout 

much of 2012, 2016, 2018, 2020, and 2021 (Mills et al. 2013, ongoing GMRI research).  The 

warming trend has been linked to changes in lobster populations.  Temperature influences 

molting and growth (Aiken and Waddy 1986), size at maturity (Le Bris et al. 2017, Waller et al. 

2021), fecundity (Koopman et al. 2015), larval survival (i.e., settlement) (Pershing et al. 2012, 

Goode et al. 2019, Oppenheim et al. 2019), and shell disease (Castro et al. 2012).  These rates 

ultimately affect population outcomes.  As waters have warmed, the southern New England 

population has declined but the Gulf of Maine population has increased (Le Bris et al. 2018, 

ASMFC 2020).  Fisheries in each region were affected by these population impacts, leading to a 

decimation of the southern New England fishery and recent record landings in the Maine fishery 

(ASMFC 2020). The Maine fishery has also been affected by short-term temperature events such 

as the 2012 heat wave, which altered the timing of the summer uptick in fishery landings, leading 

to a glut of product and a price collapse (Mills et al. 2013).   

Temperature is not the only factor changing in the Gulf of Maine ecosystem.  The region is 

characterized by high levels of seasonal and interannual variability in physical conditions such as 

currents and winds, which may also affect lobsters (Incze et al. 2010, Xue et al. 2010, Pershing et 

al. 2012).  In addition, physical changes affect other species in the ecosystem that interact with 

lobsters.  For example, changes in the abundance of the zooplankton Calanus finmarchicus 

appear correlated with changes in larval lobster survival (Carloni et al. 2018).  Further, 

traditional predators such as cod have declined in abundance and size in the Gulf of Maine, 

reducing predation on lobsters (Steneck et al. 2011, Wahle et al. 2013), but alternative predators 

may be moving into the region as waters warm (Wahle et al. 2013, Selden et al. 2018). 

Given this nexus of a rapidly changing ecosystem and high coastal community dependence 

on the lobster fishery, there is a clear need to understand how ecosystem changes are affecting 

lobster biology, population dynamics, and ultimately, the Maine lobster fishery.  As our 

contribution to the Lobster Research Collaborative, we developed and tested a suite of ecosystem 

indicators to identify changes in the ecosystem and draw connections to lobster biological and 

fishery responses.   

 



Services Provided 

 

   As members of the Lobster Research Collaborative, we developed a suite of ecosystem 

indicators that represent changes in physical and ecological conditions in the Gulf of Maine.  We 

evaluated these indicators against lobster biological and population parameters to identify 

associations with lobster population processes and trends.  These indicators can be used by 

others in the Collaborative as co-variates in models of ecosystem-lobster relationships.  They 

will also be available for consideration in the stock assessment process.  Relationships between 

point-location temperatures and lobster population parameters have been reported in the 

benchmark stock assessment (ASMFC 2020), and the indicators we developed provide an ability 

to look at a broader set of changes in ecosystem conditions at multiple nested temporal and 

spatial scales.   

 

1. Development of habitat and ecosystem indicators 

As participants in the Lobster Research Collaborative, we developed indicators of habitat and 

ecosystem conditions to help characterize how the Gulf of Maine is changing in space and time.  

These indicators included sea surface temperature (SST), bottom temperature, salinity, 

stratification, Maine Coastal Current strength, predator indices, and zooplankton indices.  Data 

source details and rationale for inclusion of each indicator are provided in Table 1. The focused 

study area included NOAA statistical areas 511, 512, and 513, as well as a coastal area defined 

for the Maine Coastal Current (Figure 1). 

We assessed relationships between these indicators and lobster biological attributes. The 

lobster data we used included the American Lobster Settlement Index (ALSI), ME DMR’s 

ventless trap survey’s sublegal lobster catch, ME/NH inshore trawl survey, NEFSC trawl survey, 

and Maine lobster landings.  We evaluated ways in which ecosystem changes affect the lobster 

population and identified drivers that may be most important for integrating environmental 

considerations into lobster population models.  

Code for indicator development can be found in the Gulf of Maine Research Institute’s 

GitHub repository Ecosystem Indicators (https://github.com/gulfofmaine/Ecosystem_Indicators). 

Each indicator has its own R Markdown sheet that includes the data sources, information on how 

to access the data, and processing code.  

  

2. Analysis and evaluation of indicators 

For each indicator, we analyzed its trend over the entire length of the time series using a 

linear model. We performed a segmented regression to find breakpoints in the slope using R 

package segmented (Muggeo 2021) and performed a changepoint analysis to find changes in the 

mean of the data using R package mcp (Lindeløv 2020). Analyses were run on yearly values 

averaged over the entire domain of the study area. We entered a subset of the indicators into a 

principal component analysis (PCA) and cluster analysis. The subset includes bottom 

temperature, bottom salinity, Maine Coastal Current index, NEFSC predator abundance, NEFSC 

predator size spectra, and the Continuous Plankton Recorder Calanus index. We selected this 

suite of indicators after investigating collinearity between the same variables of different sources 

or depths, and the longest time series within groups of similar indicators was selected. The 

significant components of the PCA were entered into a principal component regression with the 

lobster variables. Generalized additive models (GAM) were used in instances where the best 

model fits were non-linear. For each GAM, the relationship to each principal component was 



informed by the breakpoints found in the lobster biological data, and period was included as a 

grouping variable. For each GAM, year was included as a random variable.  

 

3. Participation in Lobster Research Collaborative (LRC) 

Throughout the duration of this project, we participated in meetings of the LRC, shared 

updates, and solicitated feedback on the indicators. We worked with other members of the LRC 

to use relevant lobster indicators and biological data sets. 

 

Results 

 

1. Individual indicators and lobster datasets 

Results for individual indicators are summarized in Table 2 and time series plots are shown 

in Figure 2. Detailed results can be found in the Ecosystems Indicators GitHub repository. All 

three temperature indicators show significant warming trends and have a breakpoint in the mean 

at the year 2009, where the mean temperature stepped up about one degree C after the 

breakpoint. Additionally, both sea surface temperature (SST) indicators have a breakpoint in the 

slope in the early 1990’s, that show slight cooling in the 1980s then warming from 1990 through 

present. Surface and bottom salinity, and Maine Coastal Current do not have significant linear 

trends, but have a breakpoint in the trend in 2007.9, 2005.2, and 2008, respectively. Salinity and 

the Maine Coastal Current are negatively correlated. During the years when the Maine Coastal 

Current is positive, salinity is lower. Each shows similar breakpoints in the mean around the 

years 1992 and 2010. Salinity shifts from a more saline regime to fresher water then back to 

more saline waters. The Maine Coastal Current shifts from a weaker and slightly offshore 

current, to a strong current crossing Penobscot Bay, and back to a weaker current. The 

stratification index is one of the shorter indices and does not have a significant linear trend, does 

not have a breakpoint in the slope, but does show a breakpoint in the mean around the year 2005, 

indicating a shift to a more stratified water column.  

The NEFSC species-based predator index shows a significant increasing trend in biomass 

and abundance and has a breakpoint in the mean in 2000 and 2010, respectively, with the trend 

increasing at a faster rate after the breakpoint. The NEFSC size-based predator indices show 

significant decreasing trends in size spectrum slope, with a breakpoint mean near 2010. The 

decreasing size spectrum slope indicates a greater proportion of smaller fish relative to larger 

fish. The ME/NH inshore trawl survey shows a linear increase in predator biomass and 

abundance, with a breakpoint in the slope in 2006 and 2005, respectively. Prior to the breakpoint, 

there is a decrease in predators, followed by an increase after the breakpoint. The ME/NH 

inshore trawl survey predator size spectrum shows a similar pattern in slope as the NEFSC 

survey, indicating a greater proportion of smaller fish relative to larger fish.  

The small zooplankton index is negatively correlated to small zooplankton abundance, so a 

negative index indicates a greater number of small zooplankton. The small zooplankton index 

shows a significant decreasing trend, indicating a greater number of small zooplankton. There 

are mean breakpoints around 1990, shifting to a regime of more small zooplankton, and then in 

2001, shifting to a period of fewer small zooplankton. The Calanus index, which is positively 

correlated to Calanus abundance, shows a mildly significant increasing linear trend through the 

late 1980s. 

Results for individual lobster biological data are summarized in Table 3 and time series are 

shown in Figure 3. Detailed results can be found in the Ecosystems Indicators GitHub repository. 



NEFSC trawl survey abundance and biomass data have significant positive linear trends with 

breakpoints in the trend in 2006, shifting from a positive slope to a steeper positive slope, and 

breakpoints in the mean in 2010, shifting to greater biomass and abundance. Similarly, the 

ME/NH lobster biomass and abundance data have significant positive linear trends with a 

breakpoint in its trend in 2016, changing direction from a positive slope to a negative slope, and 

a breakpoint in the mean around 2010, shifting to a period of greater biomass and abundance. 

The sublegal lobster data have a significant positive linear trend but had no breakpoints 

estimated in either its mean or slope. Lastly, the ALSI index had a borderline significant negative 

linear trend, with a breakpoint in slope in 2005, changing from a positive slope to a negative 

slope, and a breakpoint in mean in 2011, shifting to a period of lower settlement. 

 

2. Multivariate analysis 

The first three principal components had eigenvalues greater than one and explained 34.5%, 

24.8%, and 14.4% of the variability in the data, respectively (Table 4, Figure 4). Bottom 

temperature, bottom salinity, and predator abundance are strongly positively correlated with PC1 

(Table 5, Figure 5, Figure 6). The small zooplankton index is strongly negatively correlated to 

PC2, and the Maine Coastal Current is strongly positively correlated to PC2 (Table 5, Figure 5, 

Figure 6). PC3 is most strongly correlated to bottom temperature and the size-based predator 

index (Table 5). PC1 and PC3 do not have a significant linear trend, and PC2 has a moderately 

increasing trend (Table 6, Figure 4). Breakpoints in the trend were detected in PC1 in 2009 and 

2012, and in PC2 in the year 1996. Breakpoints in the mean were detected in PC1 in 2001 and 

2010, and in PC2 in 1990 and 2001 (Table 6).  

Each lobster dataset, except ALSI, was strongly positively correlated to PC1, and ALSI was 

strongly negatively correlated with PC1 (Table 7). PC2 and PC3 were uncorrelated to moderately 

correlated to the lobster data (Table 7). The results of the stepwise linear regression showed 

highly significant models for each lobster dataset (Table 8). The model with the lowest AIC 

changed depending on the source of the lobster data and ranged from a model only including 

Year or PC1 to models containing all three PCs and Year (Table 8). The results for the 

breakpoint-informed GAMs generally improved upon the stepwise regression models (Table 9). 

For most of the lobster datasets, PC1 and Year were included in the best model selected through 

AIC.   

The cluster analysis revealed which years grouped together based on the status of the 

ecosystem indicators in each year (Figure 7). The years 2011-2016 clustered together and loaded 

most strongly on the positive PC1 dimension. 1993-2001, 2008 and 2010 grouped together and 

loaded most strongly on the positive PC2 dimension. The remaining years (1981-1992, 2002-

2007, 2009) grouped together generally along the negative PC1 and negative PC2 dimensions.  

 

Discussion 

 

The physical and biological indicators developed through this project provided insights into 

conditions in the Gulf of Maine ecosystem that are associated with changes in multiple lobster 

life stages.   

Ocean temperature has been increasing over the past thirty years, with a particularly steep 

increase in temperature from about 2005 to 2016. The breakpoint in the mean of all the physical 

indicators around the year 2010 indicates the coastal ocean system may have entered a new 

regime at this time. After 2010, the study system was on average warmer and saltier, with a 



weaker disconnected coastal current, than the preceding twenty years. Additionally, after 2010 

lobster predators increased in biomass and abundance at a greater rate than in the preceding 

decades.  

Multivariate analyses help elucidate ways in which these variables act jointly to shape Gulf 

of Maine ecosystem conditions.  Our results indicate linkages between the Maine Coastal 

Current and bottom salinity in the Gulf of Maine.  In years when the Maine Coastal Current is 

stronger and crosses Penobscot Bay, bottom waters are less salty. The mean breakpoints in these 

indicators may indicate different oceanographic regimes. Prior to 1993, the coastal regions were 

salty and water movement was more offshore. From 1993 to 2010, the coastal region was less 

salty, and the coastal current was more strongly connected across Penobscot Bay. After 2010, the 

region shifted back into a saltier state with a weak or offshore coastal current. Stratification may 

have historically followed this same pattern of salinity, although the short time series available 

from buoy observations we used for this project only follows half of the cycle. Stratification is a 

function of salinity and temperature. Since temperature is increasing rapidly and salinity seems 

to follow a more cyclic pattern, overall stratification may be increasing with periods of highly 

stratified waters during the less saline periods.  

The species-based lobster predator complex has been increasing in biomass and abundance 

over the length of the time series, with a faster rate of increase in the past 10 years (Table 2). The 

years around 2010 came out as a breakpoint in the mean across all species-based indicators. The 

size-based indicators show a decreasing trend in the size spectra slope, indicating a greater 

proportion of smaller fish relative to larger fish. This pattern aligns with the trends in the 

biomass and abundance indicators, where abundance is increasing at a faster rate than biomass, 

particularly in the past 10-15 years. An increase in lobster predators across all size classes may 

lead to decrease in lobster abundance.  

The lobster biological data sets were chosen to represent different life stages of a lobster’s 

life history, from larval settlement into recruitment into the fishery. The biomass and abundance 

indicators represent both the inshore ME/NH trawl survey and offshore NMFS trawl survey and 

capture possible inshore-offshore dynamics. Lobster biomass and abundance indices, including 

the Maine landings time series, all show very similar patterns with no trends prior to the late 

1980s, moderately positive trends from the 1980s to the mid 2000s, strongly positive trends from 

the mid 2000s to the mid 2010s, peaking around 2016, and then sharply declining to 2020 (Table 

3). The sublegal dataset is too short and contains a strong linear trend so no breakpoints could be 

estimated. The ALSI index shows a strong positive trend in larval settlement to the year 2005, 

then exhibits a strong negative trend.  

The results of the multivariate analyses provide insights into how ecosystem conditions have 

aligned with different states of the lobster population. Long-term lobster population trends are 

associated with changes in the strength and direction of the Maine Coastal Current, bottom 

temperature, bottom salinity, zooplankton and predators. The early years of our analysis period 

(1981-1992) as well as 2002-2007 and 2009 were characterized by a weaker and less connected 

Maine Coastal Current, cooler and saltier water, and fewer small zooplankton (Figure 7).  

Subsequent years (1993-2001, 2008, and 2010) experienced a stronger and more connected 

Maine Coastal Current, fresher water, and more small zooplankton (Figure 7).  Both these sets of 

years aligned with positive trends in lobster biomass and abundance, with particularly strong 

increases in the lobster population in later years.  However, in the most recent years (2011-2016), 

the ecosystem has been characterized by warmer and saltier waters and higher predator 

abundance (Figure 7), and these conditions align with declines in lobster biomass and landings.    



Conclusion 

 

Many features of the Gulf of Maine ecosystem that may influence habitat suitability, 

biological processes, and population dynamics for American lobster have changed over time. 

Many ecosystem conditions—including the Maine Coastal Current, surface and bottom 

temperature and salinity, and predator indices—showed particularly distinct shifts around 2010.  

Over the observed time period, most size stages of lobster experienced increasing abundance or 

biomass, and landings also rose substantially; these changes were also concentrated after 2010.  

The larval stage showed with a counter-acting trend, with young-of-year settlement showing a 

declining trend in the American Lobster Settlement Index; these declines have been further 

exacerbated after 2010.  Our findings indicate circulation, oceanographic, and biological changes 

around 2010 transformed the Gulf of Maine ecosystem to a state that favors growth of the lobster 

population and fishery.  These changes appear to have benefitted later lobster life stages, and the 

paradoxically counter-acting trends in abundance at the larval stage versus later stages leaves 

open questions regarding the likelihood that the observed ecosystem-lobster patterns will 

continue driving a highly abundant state of the lobster population.   
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Table 1: Habitat and ecosystem indicators developed as contribution to the Lobster Research 

Collaborative, including data sources, general processing, and relevance of the indicator to 

American lobster. 

 
Indicator Data source Data processing Rationale: relevance 

to American lobster 

Sea surface 

temperature 

NOAA OISST 

(0.25°x0.25° grid, daily 

1982-2020) and Finite 

Volume Unstructured 

Grid Model (FVCOM) 

as provided through the 

Northeast Coastal 

Ocean Forecast System 

(1978-2020) 

Create time series or 

gridded spatial layers of 

temperature, anomalies, 

or degree days at 

multiple scales of 

spatial (e.g., lobster 

zone, statewide) and 

temporal (e.g., daily, 

annual) resolution 

Widely available and 

correlated to bottom 

temperature in most 

portions of Gulf of 

Maine; many 

documented 

relationships between 

temperature and lobster 

biology  

Bottom temperature Finite Volume 

Unstructured Grid 

Model (FVCOM) as 

provided through the 

Northeast Coastal 

Ocean Forecast System 

(1978-2020) 

Create time series or 

gridded spatial layers of 

temperature, anomalies, 

or degree days at 

multiple scales of 

spatial (e.g., lobster 

zone, statewide) and 

temporal (e.g., daily, 

annual) resolution 

Many documented 

relationships between 

temperature and lobster 

biology 

Salinity Finite Volume 

Unstructured Grid 

Model (FVCOM) as 

provided through the 

Northeast Coastal 

Ocean Forecast System 

(1978-2020) 

Create time series of 

salinity at multiple 

temporal scales and 

water column depths 

Relationship to 

metabolism (Jury et al. 

1994) and spatial 

distribution of lobsters 

(Tanaka and Chen 

2015) and incidence of 

shell disease (Tanaka et 

al. 2017) 

Stratification index NERACOOS buoys 

(point locations, 2001-

present) 

Create time series of 

density gradient 

between surface and 

depth 

Reflects large-scale 

circulation and seasonal 

hydrographic 

conditions; relationship 

to Calanus prevalence 

in zooplankton 

community (Head and 

Sameoto 2007), which 

has been associated 

with YoY lobster 

recruitment (Carloni et 

al. 2018) 

Strength of Maine 

Coastal Current 

FVCOM NECOFS 

model (1978-present) 

Create time series of 

strength of Eastern and 

Western portions of the 

coastal current system 

Influences larval 

distribution, 

development time, 

settlement rates, and 



population connectivity 

(Xue et al. 2010, Incze 

et al. 2010) 

Predator index: 

species-based 

ME/NH trawl survey 

(2000-present) and 

NEFSC trawl survey 

(1970-2019) 

Create time series of 

relative abundance of 

suite of lobster 

predators (identified in 

stock assessment)  

Predation release 

identified as contributor 

to lobster success in 

Gulf of Maine (Steneck 

et al. 2011, Wahle et al. 

2013) 

Predator index: size-

based 

Size-based model of 

predation pressure (Le 

Bris et al. 2018) 

ME/NH trawl survey 

(2000-present) and 

NEFSC trawl survey 

(1970-2019) 

Create time series of 

lobster predator size 

spectra slope at 

seasonal, or annual time 

steps 

Smaller-bodied 

predators prey on 

smaller size classes of 

lobsters (Wahle et al. 

2013, Le Bris et al. 

2018) 

Zooplankton index Continuous plankton 

record 

Time series index of 

zooplankton community 

that captures changes in 

small zooplankton 

abundance and Calanus 

abundance 

Potential food for larval 

lobster and associated 

with YoY recruitment 

(Carloni et al. 2018) 

 

 

  



Table 2. Habitat and ecosystem indicators: linear trend, changepoint in regression slope, 

changepoint in intercept, and sparkline showing the general pattern in the time series. 

 

Indicator Linear trend Changepoint 

in slope 

 

Changepoint 

in intercept 

Sparkline 

Sea surface 

temperature_OISST 

 

0.039 deg 

C/yr 

R2=0.46  

p << 0.05 

 

1992 2009 

 

Sea surface 

temperature_FVCOM 

 

 

0.032 deg 

C/yr  

R2=0.32 

p<<0.05 

1990.9 2009 

 

Bottom temperature 0.014 deg 

C/yr 

R2=0.11  

p=0.03 

No 

changepoint 

estimated 

 

2009 

 

Surface salinity NS 2007.94 

 

1992, 2008 

 
Bottom salinity NS 2005.18 

 

1992.5, 

2010.6 

 
Maine Coastal 

Current Index 

NS 2008 

 

1993.4, 

2010.6 

 
Stratification NS No 

changepoint 

estimated 

2005 

 
ME/NH predator 

biomass 

R2=0.33 

p << 0.05 

2011 

 

2014 

 
ME/NH predator 

abundance 

R2=0.3 

p << 0.05 

2003 2011 

 
NEFSC predator 

biomass  

R2=0.13 

p = 0.024 

1998 

 

2009.4 

 



NEFSC predator 

abundance 

R2=0.57 

p<<0.05 

2007 

 

1990, 2009.5 

 
NEFSC size spectra 

slope 

R2=0.28 

p=0.00018 

No 

changepoint 

estimated 

2009 

 
ME/NH size spectra 

slope 

R2=0.46 

 p=0.00096 

No 

changepoint 

estimated 

2010.85 

 
Small zooplankton 

index 

R2=0.17 

p=0.002 

No 

changepoint 

estimated 

1989.69, 

2001.5 

 
Calanus index R2=0.16 

p=0.002 

1987 

 

1975.42 

 
 

 

 

  



Table 3. Lobster biological attributes and data sources, and their associated linear trends, 

changepoint in regression slope, changepoint in intercept, and sparkline showing the general 

pattern in the time series. 

 

Lobster biological 

attribute and 

data source 

Linear trend Changepoint in 

trend 

Changepoint in 

mean 

Sparkline 

Juvenile lobster 

density, American 

Lobster Settlement 

Index (ALSI) 

R2 = 0.21, 

p=0.046 

2005 2011.8 

 

Sublegal (70-80mm) 

lobster CPUE, ME 

DMR ventless trap 

survey 

R2 =0.73, 

p<<0.05 

No changepoint 

estimated 

No changepoint 

estimated 

 

Lobster biomass, 

ME/NH trawl survey  

R2 =0.71, 

p<<0.05 

2004, 2016 2009.7 

 
Lobster abundance, 

ME/NH trawl survey  

R2 = 0.71, 

p <<0.05 

2004.1, 2016 2009.6 

 
Lobster biomass 

index, statistical 

areas 511-513, 

NEFSC trawl survey  

R2 = 0.59, 

p<<0.05 

1989.2, 2006.3 1995.2, 2010.5 

 

Lobster abundance 

index, statistical 

areas 511-513, 

NEFSC trawl survey  

R2 = 0.49, 

p<<0.05 

1990.1, 2006.3 2010.6 

 

Maine lobster 

landings, ME DMR 

R2 =0.68, 

p<<0.05 

1987.6, 2008.7, 

2012.6 

1996.5, 2009.5 

 
 

  



Table 4. Variance explained by first four principal components in analysis of habitat and 

ecosystem indicators. 

 

 PC1 PC2 PC3 PC4 

Standard 

deviation 1.55 1.32 1.00 0.90 

Proportion of 

Variance 0.34 0.25 0.14 0.12 

Cumulative 

Proportion 0.34 0.59 0.74 0.85 

 

 

 

 

Table 5. Loading of each habitat and ecosystem indicator on first three principal components. 

 

Indicator PC1 PC2 PC3 

Bottom temperature 0.45 -0.075 0.54 

Bottom salinity 0.45 -0.44 0.043 

Maine Coastal 

Current -0.35 0.48 0.27 

NEFSC predator 

abundance 0.49 0.33 0.3 

NEFSC size 

spectrum slope -0.34 -0.11 0.69 

Small zooplankton 

index -0.19 -0.62 0.031 

Calanus index -0.30 -0.27 0.27 

 

 

 

 

Table 6. Breakpoint of principal components. 

 

Indicator 

Linear 

trend 

Breakpoint 

in trend 

Breakpoint 

in mean 

PC1 

NS 

2009, 2012 

2001.7, 

2010.5 

PC2 

R2=0.18 

p = 0.012 1996.9 

1990.2, 

2001.6 

PC3 

NS No 

breakpoint 

detected 

No 

breakpoint 

detected 

 

 



Table 7. Correlation table between PC1, PC2, PC3 and each lobster data set. 

 

 PC1 PC2 PC3 

ALSI -0.69 -0.21 0.034 

Sublegal_CPUE 0.72 0.13 -0.052 

ME/NH biomass 0.74 0.015 -0.35 

ME/NH abundance 0.74 -0.014 -0.35 

NEFSC biomass 0.60 0.20 -0.021 

NEFSC abundance 0.62 0.16 -0.10 

ME_landings 0.55 0.27 0.22 

 

 

Table 8. Stepwise regression results 

 

 R2 p Model 

ALSI 0.47 0.0022 lob_index~PC1 

Sublegal_CPUE 0.78 0.00034 lob_index~Year 

ME/NH biomass 0.89 2.07E-6 lob_index~PC1+PC2+Year 

ME/NH abundance 0.90 8.73E-07 lob_index~PC1+PC2+Year 

NEFSC biomass 0.80 1.8E-09 lob_index~PC1+PC2+PC3+Year 

NEFSC abundance 0.77 1.83E-08 lob_index~PC1+PC2+PC3+Year 

ME_landings 0.95 6.03E-19 lob_index~PC1+PC2+Year 

 

 

Table 9. Results for breakpoint period-based GAMs relating lobster indices to PC1, PC2, and 

year. Models were chosen based on AIC and only best models are shown. In each model, PC1 

and/or PC2 is grouped by period based on the breakpoint years of the lobster index of interest 

and year is a random variable. 

 

 R2 

Deviance 

explained Model 

ALSI 0.58 70% lob_index ~ s(PC1, by = period)+s(year) 

Sublegal_CPUE 0.75 77.6% lob_index ~ s(year) 

ME/NH biomass 0.94 95.5 lob_index ~ s(PC1, by = period)+s(year) 

ME/NH abundance 0.95 96.7% lob_index ~ s(PC1, by = period)+s(year) 

NEFSC biomass 0.96 96.9% 

lob_index ~ s(PC1, by = period)+s(PC2, by = 

period)+s(year) 

NEFSC abundance 0.86 90% 

lob_index ~ s(PC1, by = period)+s(PC2, by = 

period)+s(year) 

ME_landings 0.98 98% lob_index ~ s(PC1, by = period)+s(year) 

 

  



 

 

 
 

Figure 1. Study region. NOAA statistical areas are indicated as colored polygons. The region 

used for calculating the Maine Coastal Current index is indicated by the black outlined open 

polygon. 

 



 
Figure 2. Time series plots of ecosystem indicators. Blues line shows the breakpoint regression 

for each indicator. Red lines show the breakpoints in the mean. 



 
Figure 3. Time series plots of lobster data. Blues line shows the breakpoint regression for each 

indicator. Red lines show the breakpoints in the mean. 

  



 

 

 
 

Figure 4. Time series of PC1, PC2, and PC3 

 

 

 

 
 

Figure 5. Biplot of indicator scores on Principal Components 1 and 2. Line length and direction 

represents each variable’s loading to PC1 and PC2. The dots are scores for each year along the 

PC1 (Dim 1) and PC2 (Dim 2) axis. The percentage in the parentheses in the axis labels is the 

amount of variability explained by each PC. Cpr_SecondMode is the Calanus index. 

Cpr_FirstMode is the small zooplankton index 

 



 
 

Figure 6. Loadings plot of PC1 and PC2 for each indicator. Cpr_SecondMode is the Calanus 

index. Cpr_FirstMode is the small zooplankton index  

 

 

 

 

 
 

Figure 7. Groupings of years based on a cluster analysis of the indicators. Colored years and 

polygons represent each cluster. 
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ABSTRACT 

This project builds on previous research describing correlative links between changes in the 

abundance of the copepod Calanus finmarchicus, a foundational zooplankton species of the 

pelagic food web, and recruitment of young-of-year lobster to benthic nursery habitats in the 

Gulf of Maine. We addressed two novel objectives: (1) To evaluate how local- and basin-scale 

zooplankton dynamics and oceanographic indicators in the Gulf of Maine correlate with lobster 

settlement indices and each other since the late 1980s; and (2) To evaluate changes in larval 

lobster and C. finmarchicus phenology over the period. Under objective 1 we report that lobster 

settlement trends in southwestern Gulf of Maine study areas, from Midcoast Maine to Cape Cod 

Bay, tend to be significantly correlated with basin-wide C. finmarchicus dynamics and the 

strength of the Labrador Slope Water index, whereas lobster settlement in the northeastern Gulf, 

from Penobscot Bay to the Bay of Fundy, tended to link more strongly to C. finmarchicus 

variability in the Fundy region, and less with changes in the Labrador Slope Water. As for 

phenological shifts, we found significant correlation between warming ocean temperature and 

the earlier onset of the lobster egg hatch and the first appearance of Stage I larvae. Consequently, 

Stage I larvae have appeared about two-weeks earlier than they did in the 1980s, but their last 

appearance has been delayed by than two weeks, while the onset, end and length of the postlarval 

season has varied without trend. Since 2010, the C. finmarchicus season has been ending before 

the peak abundance of stage I lobster larvae, with the net effect being an increasingly 

mismatched phenology of the two species in recent years. Our results are consistent with the 

hypothesis that the combined effect of climate-related declines in abundance and phenological 

shifts of C. finmarchicus over the past decade have contributed to declines in lobster settlement 

over the past decade, and justify further research into the mechanisms of this interaction. These 
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changes also align with the weakening influence of cold Labrador Slope Water and strengthening 

effects of warm Gulf Stream waters that precipitated an ecosystem-wide regime shift in the Gulf 

of Maine over the past decade and may have greater implications for lobster recruitment than 

previously suspected. 
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INTRODUCTION 

 

There are clear signs that the changing ocean environment is directly and indirectly impacting 

Maine’s, and the nation’s most valuable fishery – the American lobster, Homarus americanus.  

In 2018 Maine’s Department of Marine Resources (DMR) initiated a Lobster Research 

Collaborative (LRC) that solicited proposals to address aspects of the lobster fishery and ecology 

that would lead to a better understanding of environmental factors and interactions driving 

change in the lobster population.  In response to that call, we assembled a team representing 

academic, non-governmental, state and private organizations that, together with Maine DMR, are 

well positioned to address one of the least understood aspects of American lobster ecology and 

population dynamics – trophic interactions of larvae with the Gulf of Maine’s (Gulf) pelagic 

food web. The project builds on a previously published benchmark study (Carloni et al. 2018), 

describing correlative links between changes in the abundance of the copepod Calanus 

finmarchicus, a keystone species of the pelagic food web (Pershing and Stamiezskin 2020), and 

recruitment of young-of-year (YoY) lobster to benthic nursery habitats in the Gulf.  As with the 

Carloni et al. paper, this project capitalizes on more than three decades of zooplankton and 

benthic lobster settlement monitoring in the coastal Gulf. We continue to investigate the links 

between lobster recruitment and zooplankton assemblages over a broader geographic and 

taxonomic scope to better evaluate potential explanatory mechanisms behind Gulf-wide 

settlement and fishery recruitment declines (Oppenheim et al., 2019). We also, again, take 

advantage of the three-decade zooplankton and larval lobster time series collected on the New 

Hampshire coast to evaluate changes in phenology. This project therefore entailed two primary 

objectives: (1) To evaluate how local- and basin-scale zooplankton dynamics and oceanographic 
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indicators in the Gulf of Maine correlate with lobster settlement indices and each other; and (2) 

Quantify changes in larval lobster and zooplankton phenology over the three decades of 

seasonal sampling along the New Hampshire coast from 1988 to 2018.  

 Under Objective 1, we reasoned that if coherent relationships existed between basin-scale 

zooplankton dynamics, coastal zooplankton dynamics, and lobster settlement patterns, we would 

have a compelling evaluation of the environmental factors influencing lobster recruitment 

success within the Gulf of Maine.  

As for Objective 2, long-term (1988-2018) zooplankton and larval lobster monitoring 

conducted along the New Hampshire coast provide a unique opportunity to assess phenological 

changes of lobster larvae and zooplankton over the past three decades. Surveys of egg-bearing 

female lobsters indicate that seasonal onset of the larval hatch has been earlier in recent years 

(ASMFC 2020). Lobster larval development is well known to be responsive to temperature 

change and to be subject to delay under starvation (Templeman 1936, Anger et al. 1985). What 

remains unclear is whether changes in these environmental factors have altered the phenology of 

either the predator or their putative prey, C. finmarchicus. However, if the zooplankton 

assemblage is an important prey item for larval lobster, a divergent phenology between the two 

would be consistent with the hypothesis of Carloni et al. (2018) that lobster larvae have become 

more food limited recently and would also be a further indication of the linkage between the 

Gulf’s larval lobster population dynamics and the pelagic food web.   
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METHODS 

Objective 1: Local and basin-scale correlations of zooplankton, lobster settlement and 

oceanographic indicators  

We compared time trends across five data sets from the Gulf of Maine (Fig. 1): the American 

Lobster Settlement Index (ALSI) from southern Nova Scotia to Cape Cod Bay;  the abundance 

of C. finmarchicus in coastal seasonal surveys in (2) New Hampshire and (3) the mouth of the 

Bay of Fundy; (4) the abundance of C. finmarchicus and associated zooplankton from NOAA’s 

Gulf-wide Ecosystem Monitoring (EcoMon) cruises, and (5) the relative advection index of 

Labrador Slope Water (LSW) entering the Gulf through the Northeast Channel.  Details of each 

time series follow. 

Lobster Settlement time series: The time series for lobster settlement was based on suction 

sampling conducted by contributors to the American Lobster Settlement Index from 1989-2020 

(ALSI, https://umaine.edu/wahlelab/american-lobster-settlement-index-alsi/). The data were 

constrained to individuals with a carapace length of 17 mm or less except for Massachusetts 

study areas where the constraint was set at 24 mm to account for a somewhat warmer regime 

with faster growth rates. These size bins are estimated to correspond to Young-of-Year (YoY) 

and 1-Year-Olds, in effect capturing two years of settlement, and serving our intent to 

characterize long-term trends and reduce observation errors rather than characterizing finer-scale 

inter-annual variability (Harrington et al. 2018). We further constrained the data to study areas 

within the Gulf, from southern Nova Scotia through Cape Cod, and study areas with a minimum 

of six years of data. This resulted in a data set consisting of 14 study areas, each comprised of 4-

10 study sites and collectively totaling 70 study sites. 



 7 

ALSI suction-sampling surveys at established fixed sites have a hierarchical sampling 

design with study areas containing multiple representative study sites and multiple quadrats 

sampled per study site and year. We applied a hierarchical model-based method rather than a 

designed survey index, such as nested random-stratified, because study areas did not encompass 

all the coastline in the study region and study sites represent selected habitats. Observations of 

young lobsters in quadrats were converted to densities, based on quadrat size, then averaged 

across quadrats at a study site and sampling event. For time-series trajectories of individual study 

areas, means across study sites with respective study areas were simply averaged together on a 

yearly basis.  

To estimate a region-scale Gulf-wide lobster settlement index, we used the Template 

Model Builder platform (TMB, Kristensen et al. 2016) to fit a state-space model that finds a 

common trajectory of lobster settlement through time that best describes all study areas. 

Each study area’s influence on this common trajectory is proportional to the length of its time 

series. Because some locations naturally have more lobsters than others, we estimate a “study 

area effect” (likely a function of larval supply, habitat quality, predation rates, etc.), which is 

simply a multiplier that scales abundance for each study area up or down to account for this 

effect. To obtain a predicted settlement time series from this model, we applied the study area 

effect for a single study area to the estimated common trajectory among all study areas. The 

choice of study area is inconsequential for our purposes because our primary interest is in 

relative change over time, and they give the same result when the estimated temporal trend is 

correlated against another data set, such as an environmental index. 

Because prior analysis suggested differences in trajectories among study areas in the 

northeastern and southwestern end of the Gulf (Pershing et al. 2012, Goode et al. 2019), we also 
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split the region and fit two separate models; one to northeastern study areas from Penobscot Bay 

through Nova Scotia, and a second model including southwestern study areas from Midcoast 

Maine to Cape Cod (Fig. 1). 

 

Coastal New Hampshire and Bay of Fundy copepod time series: We constructed coastal 

copepod abundance time series based on a zooplankton monitoring study conducted off New 

Hampshire (Normandeau 2016) and lower Bay of Fundy (Casault et al. 2020). In New 

Hampshire macrozooplankton were sampled at two stations using oblique tows with a pair of 1-

m diameter plankton hoop nets (505 μm mesh) (Fig. 1 and Fig. S-1). Nets were fitted with 

depressors and flow meters and towed for 10 minutes under variable speeds to allow nets to 

sample the majority of the water column with each tow sampling a volume of about 500 m3. 

Samples were collected monthly from 1988-2018 and fixed in buffered formalin before 

enumeration. Annual geometric mean C. finmarchicus abundances were then calculated for each 

site. Because values for both sites were not available for all years, we merged the time series for 

the two sites into a single time series by fitting a linear model with year effects and offsets for 

different sites and then extracting the calculated year effects. We then fit a local-level model to 

the merged time series.  

Sampling for zooplankton at the mouth of the Bay of Fundy began in 1999 by Fisheries 

and Oceans Canada fixed station “Prince 5” (Fig. 1) near Grand Manan Island (Casault et al. 

2020). Monthly vertical tows were conducted year-round with ring net (202 μm mesh net) for 

biomass (wet and dry weights) and numerical abundance. Samples were fixed in buffered 

formalin. Numerical abundance data were log transformed, expressed as standardized anomalies 
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relative to the time series mean, and smoothed prior to conducting correlation analyses described 

below. 

 

EcoMon Regional zooplankton time series: We used zooplankton data collected on NOAA, 

Northeast Fishery Science Center (NEFSC) Ecosystem Monitoring (EcoMon) cruises between 

1988 and 2018 to examine regional dynamics of the zooplankton assemblage and specifically, C. 

finmarchicus, across the Gulf of Maine (Fig. 1). EcoMon sampling uses two 60 cm diameter 

Bongo nets with different mesh sizes: 333 and 505 μm. While these surveys occurred year-

round, we constrained the analysis to samples collected during the summer and fall survey 

periods, (i.e., between August 7th and November 20th, Fig. S-2). The summer period best 

corresponded to the time that lobster larvae were present, but sampling rates for this season were 

low and inconsistent across years. However, the fall period had more consistent sampling and 

exhibited similar temporal patterns to the summer data, so was also included to stabilize 

abundance indices. All calculations were performed on zooplankton densities per meter squared. 

We explored cohesive time trends among groups of zooplankton species represented in 

the EcoMon database for summer and fall using a principal components analysis (PCA). This 

analysis was chosen both to understand if there were significant temporal shifts in community 

composition and with some expectation that dynamics across multiple correlated species may be 

more stable than for individual species, partially mitigating observation error. The PCA included 

the 21 most common species, occurring in >20% of plankton samples, as well as three less 

common species groups (Calanus minor, Ostracods and Protozoa) that exhibited strong temporal 

patterns. Abundances from individual tows for each species were log+1 transformed before 

aggregating by survey stratum and year. We then transformed the resulting mean abundances to 



 10 

z-scores within species and stratum across years to effectively perform a PCA on sample 

correlations, which gave each species and stratum equal influence in the analysis regardless of 

absolute abundances or frequency of observation. Finally, we selected a limited set of the 

resulting principal components based on the variance explained by each component and the 

plankton species groups that were closely correlated with each component. For each retained 

component, we averaged the PCA score for each year across strata and plotted this mean time 

series for the PCA.  

To examine if there were spatially distinct trajectories for C. finmarchicus in different 

areas of the EcoMon sampling domain, we log-transformed and averaged copepod densities 

within strata and years, then calculated z-scores within each stratum across years, and conducted 

another cluster analysis on the standardized data. This analysis did not support splitting the Gulf 

into sub-areas with distinct dynamics, so we calculated a stratified-mean survey index for the 

region as a whole. This survey index was then log-transformed and fitted to a local-level model.  

 

Labrador Slope Water Index: Water enters the Gulf of Maine primarily through the northeast 

channel and surface waters south of Nova Scotia (Fig. 1; Runge et al. 2015). As part of the State 

of the Ecosystem Report (https://noaa-edab.github.io/tech-doc/ ), the NOAA-NEFSC maintains 

and updates a time series on the composition of water entering through the Northeast Channel, 

based on CTD data collected from a defined region encompassing the channel (Fig. 1) and a 

three-point mixing algorithm developed by Mountain (2012). Here we used data between 1988 

and 2018 publicly available for download through the R ‘ecodata’ library. Of the three potential 

water types observed here, most water is either Labrador Slope Water (LSW) or Warm Slope 

Water (WSW), with a third small fraction being Scotian Shelf Water. LSW is essentially derived 
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from the cold, low salinity, and nutrient rich Labrador Current flowing from the north, whereas 

the WSW is warm, high salinity, nutrient poor Gulf Stream water flowing from the south. Thus, 

the LSW index is essentially an indicator for the temperature, salinity, and nutrient composition 

of water entering the Gulf of Maine, as well as the zooplankton community associated with these 

waters. We extracted the time series of the proportion of LSW entering the Gulf and fit a local-

level model.  

 

Correlation Analysis:  We first performed Pearson’s correlations of C. finmarchicus from both 

the Gulf-wide EcoMon and Bay of Fundy to the raw lobster settlement time series for 14 

individual ALSI study areas, including lagging lobster settlement behind plankton dynamics by 

one year.  

We then used the aggregated Gulf-wide, northeast and southwest lobster settlement 

indices described above, to perform Pearson’s correlations for all combinations of the biological 

and environmental indices to include raw and smoothed C. finmarchicus indices from coastal 

New Hampshire, Bay of Fundy, the Gulf-wide EcoMon domain, as well as Labrador Slope 

Water index area (Fig. 1).   

 

Objective 2: Changes in zooplankton and lobster larval phenology 

Study Area: Changes in phenology were assessed for American lobster and C. finmarchicus 

using the following long-term monitoring programs: (1) Commercial lobster sea sampling; (2) 

lobster larval neuston tows: and (3) oblique macrozooplankton tows.  Sampling for all three of 

these monitoring programs were conducted off the coast of New Hampshire (Fig. 1, inset). 

Data Sources:  
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Commercial Sea Sampling: New Hampshire Fish and Game Department conducted monthly 

sampling of the commercial lobster catch from NOAA Statistical Area (SA) 513 from May 

through November at three areas along the New Hampshire coastline from 2002 through 2017 

(Fig. 1).  Sampling was conducted during day trips on commercial lobster boats fishing in NH 

waters.  During each trip, lobsters were sampled from a majority of trawls hauled. The following 

biological data were collected for each lobster: sex, presence and developmental stage of eggs, 

presence of v-notch, cull condition, molt stage, shell disease, and carapace length (mid-dorsal 

carapace length to the nearest millimeter (mm). A full description of the egg staging technique 

used in this study can be found online (https://www.youtube.com/watch?v=cJogiaAofCg )  

Zooplankton and larval lobster sampling: Normandeau has conducted zooplankton and larval 

lobster monitoring off the New Hampshire coast since 1978 as part of ongoing environmental 

impact studies. Methods for the zooplankton surveys are described above under Objective 1. To 

sample lobster larvae, a neuston net (1000 micron) was deployed with depressor and flow meter 

to sample 0.5 m of the surface.  Thirty-minute tows were made during the day, sampling an average 

area of ~3730 m2 (a volume of 1865 m3).  Tows were conducted weekly from May through 

October.  In our analysis, we used mean values for stage I and postlarval (stage IV) indices from 

1988 through 2018 due to consistency in sampling during that time period. We did not analyze 

trends in stage II and stage III larvae as these stages are primarily found at greater depths than can 

effectively be sampled by neuston net (Harding et al. 1987).  

Statistical Analysis:  We used Pearson’s correlation coefficient (r) to assess linear relationships 

between variables.  In cases where variables violated the normality assumption (as assessed via 

Shapiro Wilk test), Spearman’s rank test was used to assess correlations.  Trends in time series 

were assessed using Mann-Kendall, and deemed significant at the 0.05 level.  Because if 
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differences in sampling frequency, changes in phenology of lobster larvae were assessed on a 

weekly basis, whereas trends in C. finmarchicus were assess by two-week blocks, which are 

expressed as time periods (e.g., time period 1 = first two weeks of January).  We defined the start 

of C. finmarchicus season as the time period where the 25th percentile of the cumulative annual 

index was reached, the end of the season as the 75th percentile and duration as 25th to the 75th 

percentile.   

We also evaluated the degree of overlap between the larval lobster and C. finmarchius 

season.  To do that we created a mismatch index modeled after Burthe et al. (2012), assessing the 

difference in time between peak stage I lobster larval abundance and the end of the C. 

finmarchicus season as defined above. Peak stage I abundance was used because we presumed 

that for larvae to advance through the stages, it would be critical for stage I larvae to have an 

ample supply of food. 

 
 

RESULTS 
 

Objective 1: Local and basin-scale correlations of zooplankton, lobster settlement and 

oceanographic indicators  

Lobster dynamics:  The smoothed index for YoY and 1-year old lobsters indicates a period of 

moderate settlement density between 1990-1995, a drop to a period of low densities from 1996-

2000, followed by a sharp rise to high settlement levels from 2003-2011, followed by another 

drop to low levels from 2013-2020 (Fig. 2a). Splitting the study areas into northeastern and 

southwestern sectors reveals distinct trajectories for the two areas (Fig. 2b). The trend for the 

northern area is consistently lower in the first half of the study period, followed by a sharp rise in 
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2005 to match and exceed the southwestern study areas. The two sub-regions show remarkably 

cohesive dynamics for the second half of the period. 

 

Zooplankton Assemblage Dynamics: Our more taxonomically inclusive evaluation of aggregate 

time trends among the EcoMon zooplankton assemblage indicated complex trends in the first 

three Principal Components (Fig. 3).  PC1 accounted for 21% of the total variance and was 

primarily associated with five diverse taxonomic categories (Oithona spp., Siphonophora, 

Gastropoda, Protozoa, and Chaetognatha). This PC shows strong temporal trends, broken into 

three time periods, first increasing prior to 2000, dropping to a low level through 2011, then 

jumping to a high level thereafter.  PC2 accounted for 15% of the variance and was primarily 

associated with four copepod groups (Temora longicornis, Acartia spp., Centropages hamatus, 

Pseudocalanus spp., and bryozoan larvae). This PC exhibited a gradual decline throughout the 

time series with a potential regime shift around 2000. PC3 accounted for 8% of the variance and 

comprised four copepod taxa: C. finmarchicus, Pseudocalanus spp., Metridia lucens and 

Nannocalanus minor, the first three of which are positively correlated with the component, while 

N. minor was negatively correlated with the component. It is noteworthy that of the four species 

N. minor is associated with warmer water and has the most southern distribution (WORMS 

2021). PC3 exhibits three stable regimes, starting above the time series mean prior to 2002, then 

hovering close to the mean through 2010, before dropping in 2011, ending at time-series lows in 

2016 and 2017. 

 

Calanus finmarchicus Dynamics: The C. finmarchicus index from coastal New Hampshire 

shows a high-density regime from 2001-2009 with low densities before and after this period 
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(Fig. 4a). Similarly, the C. finmarchicus index from the EcoMon survey was low prior to 2001, 

increases through 2005, followed by a decline through the remainder of the time series, ending at 

or near record low values (Fig. 4b).  The C. finmarchicus time series for the coastal Fundy region 

did not begin until 1999, but it is similarly low in its initial year and increases dramatically in the 

early 2000s to a time series peak in 2006 after which it declines monotonically through 2018 

(Fig. 4c). The volume of Labrador Slope Water advected into the Gulf of Maine has been 

declining in recent years: while there has been much interannual variability, the smoothed index 

was generally high, approaching 30%, until the late 2000s followed by a decline to less than 10% 

in the most recent years (Fig. 4d).  

 

Correlations: The Gulf-wide, smoothed EcoMon C. finmarchicus index from 1989 to 2018 

tended to correlate more strongly with lobster settlement trends in the southwestern Gulf of 

Maine.  EcoMon’s copepod index significantly correlated with the raw lobster settlement trends 

in six of the 14 study areas when unlagged and eight of the 14 when lagged by one year, with all 

of them restricted to the southwestern end of the Gulf, southwest of Penobscot Bay when 

unlagged, and all but one when lagged by one year (Fig. 5). By contrast, the Bay of Fundy 

smoothed C. finmarchicus index tended to correlate more strongly with lobster settlement 

dynamics in the northeastern Gulf.  This copepod index correlated with the raw lobster 

settlement trends in five of the 14 study areas when unlagged, and seven when lagged by one 

year (Fig. 6). Three of the five significant unlagged correlations, and five of the seven lagged 

correlations, were with lobster study areas in the northeastern Gulf, from Penobscot Bay to 

Beaver Harbour.  In short, this analysis suggests lobster settlement trends in the southwestern 

Gulf of Maine to be more strongly linked to basin-scale C. finmarchicus dynamics, while those 
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in the northeastern sector may be more strongly tied to coastal dynamics in the Bay of Fundy and 

eastern Maine. 

Figure 7 and Table 1 provide a comparison of the correlation statistics for the aggregated 

and smoothed state-space lobster settlement time series (Fig. 3; north, south and combined study 

areas) with the smoothed New Hampshire, Bay of Fundy and EcoMon C. finmarchicus time 

series (Fig. 4a-c), as well as the smoothed Labrador Slope Water index (Fig. 4d).  Correlations 

involving smoothed time series performed better than raw time series in virtually all cases. For 

brevity and clarity only correlations for the smoothed time series are given in Table 1.  Sixteen of 

the of 18 correlations presented in Table 1 were significant at p<0.05, and no correlations were 

negative. The coastal New Hampshire and Gulf-wide EcoMon C. finmarchicus time series, and 

the Labrador Slope water most strongly correlated with the ALSI lobster combined and southern 

time series, whereas C. finmarchicus trends in the Bay of Fundy correlated more strongly with 

lobster trends in the north. Moreover, we observed that C. finmarchicus dynamics in coastal New 

Hampshire are more highly synchronized with the Gulf-wide (EcoMon) C. finmarchicus 

dynamics than those in the Bay of Fundy.  Similarly, variability in the Labrador Slope Water was 

strongly tied to C. finmarchicus trends in both New Hampshire and EcoMon, but not to the Bay 

of Fundy.  In short, as with our finer spatial scale correlations depicted in Fig. 5 and 6, lobster 

settlement trends in the southwest Gulf of Maine appear to be generally correlated with basin-

wide C. finmarchicus dynamics and the Labrador Slope Water index, whereas lobster settlement 

in the north tends to link more strongly to C. finmarchicus variability in the Fundy region, which 

also does not appear to be as strongly tied to changes in the Labrador Slope Water.   
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Objective 2: Changes in zooplankton and lobster larval phenology 

The proportion of lobster eggs hatching in June has tripled on average since these data 

have been collected, beginning in 2002  (Fig. 8, Mann Kendall: P=0.021).  This trend correlates 

well with mean spring temperatures (April through June) over the same period (Pearson’s: 

r=0.7013, P=0.0025, time series not shown).  Accordingly, the first appearance of stage I larvae 

advanced on average two weeks earlier over the time series (Fig. 9a, Mann Kendall: P=0.070), 

which also correlates well with spring bottom water temperature (Spearman’s -0.5567, 

P=0.0011, time series not shown).  Last appearance of stage I ranged from week 26 to 40 and 

trended significantly upward (Fig. 9b, Mann Kendall: P=0.037).  First appearance, last 

appearance, and season duration of postlarvae, has varied without trend, however, over the time 

series (Mann Kendall >0.05). But because of the earlier appearance of stage I larvae, total season 

duration to last appearance of postlarvae has increased over the time series (Fig. 9c, Mann 

Kendall: P=0.009), resulting in a significant inverse correlation between first appearance of stage 

I and total larval season duration (Pearson’s r=-0.5004, P=0.0067). 

Although the onset of the C. finmarchicus season has varied without trend over the 30 

year time series (Mann Kendall P>0.05), the season end has tended to come earlier in recent 

years, resulting in a generally shorter season (Figs. 10a & b; Mann Kendall: P<0.05).  We found 

the strongest correlation between monthly counts of C. finmarchicus and annual abundance of 

postlarval lobster to occur in July and August (Table 2), suggesting these months to be especially 

important to postlarval success.  The C. finmarchicus season duration has not only become 

shorter, but since 2012 it has ended before July 1 in six of the seven years (Fig. 10).  This has 

only occurred five other times in the 30-year time series.   
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Differences in the timing of peak stage I lobster larvae and the C. finmarchicus season 

were integrated into a mismatch index (Fig.11), which depicts a significant downward trend (i.e., 

reduced overlap) over the time series (Mann Kendall P=0.039).  That is, between 2000-2009 

stage I larvae peaked well before the end the C. finmarchicus season, but in six of the nine years 

since 2010 stage I larvae peaked after the C. finmarchicus peak.  

 
 

DISCUSSION 

 

Lobster - zooplankton linkages in the Gulf of Maine 

Our retrospective three-decade time series analysis reinforces our understanding of correlative 

linkages between American lobster recruitment and changes in the Gulf of Maine’s pelagic food 

web, as might have resulted from warming temperatures and changing oceanography over the 

past few decades since relevant long-term environmental monitoring time series have become 

available.  Specifically, by virtue of NOAA’s EcoMon database, we have extended the 

correlations reported for the New Hampshire coast (Carloni et al. 2018) to include a larger 

geographic scope of biological and oceanographic indicators.  

The significant correlation between the local scale New Hampshire data set and the Gulf-

wide scale EcoMon time series for C. finmarchicus indicate that time trends measured in coastal 

New Hampshire strongly reflect basin-scale dynamics for this species. This is important because, 

to date, evidence of larger scale coherence was only suggested by correlations between local C. 

finmarchicus variability measured in coastal New Hampshire and lobster settlement time series 

along the southwestern Gulf coast (Carloni et al. 2018). Similarly, in the present study we found 

that EcoMon’s Gulf-wide C. finmarchicus index most strongly correlated with lobster settlement 
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trends at study areas in the southwestern Gulf of Maine, but only weakly with those in the 

northeast. Conversely, we have found lobster settlement dynamics measured in the northeastern 

sector of the Gulf to more strongly correlate with C. finmarchicus variability measured there, by 

virtue of the new biological monitoring data from the Fundy region (Casault et al. 2020).  The 

biological implications of contrasting physical oceanographic conditions and dynamics in the 

northeast and southwest Gulf have long been recognized, especially as regards the lobster fishery 

(Huntsman 1923, Steneck and Wilson 2001, Pershing et al. 2012, Goode et al. 2019).  From the 

present analysis it is clear that the large surge in juvenile lobster observed in the northeast Gulf 

lagged a few years behind the smaller magnitude surge in the southwest, but over the last decade 

the two regions have been declining precipitously in tandem.  One interpretation for the lag in 

the northeast lobster settlement surge, advanced by Goode et al. (2019), is that until the 

northeastern Gulf warmed sufficiently, larval settlement was suppressed by the relatively cool 

temperatures in that region.  They argued that the relatively recent boom in lobster settlement in 

the northeastern Gulf in the mid-2000s was triggered by warming above a critical thermal 

threshold for larval developmental at approximately 12oC (MacKenzie et al. 1988, Annis 2005).  

We caution that the spatial coverage of the ALSI settlement time series was relatively sparse 

prior to 2000 and the state-space model may not fully capture regional dynamics in the earlier 

years. Nonetheless, the state-space time series extrapolated back to the 1990s is grounded in an 

understanding of the scale of spatial coherence and justifies dividing the Gulf into northeastern 

and southwestern recruitment cells (e.g., Pershing et al. 2012, Goode et al. 2019), even if they 

may have become more convergent in recent years.  In addition, the trends in early benthic phase 

lobster abundance are also robust to the selection of size definitions used for age 0+ and 1+ year 

lobsters. The size ranges we selected are based on previous analyses shared with Maine DMR 
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(e.g., Harrington et al. 2017, Morin and Wahle 2019) and remain the subject of continuing 

refinement and interpretation. 

Especially noteworthy is the finding that C. finmarchicus is not unique among the 

zooplankton in its downward trajectory over the past decade.  The EcoMon database reveals a 

significant decline over the past decade of a taxonomically diverse segment of the zooplankton 

assemblage including protozoans, siphonphores, chaetognaths and copepods, as well as C. 

finmarchicus.   Concurrent with these declines are dramatic oceanographic changes in the Gulf 

of Maine that have diminished primary and secondary productivity over the past decade, and 

may further be driven by environmental changes occurring in the Arctic that transfer to the Gulf 

of Maine along the Scotian Shelf (Friedland et al. 2020, Gonçalez-Neto et al. 2021, Seidov et al. 

2021).  These reports, along with the declines in the Labrador Slope Water index trend reported 

here, suggest a weakening influence of the cold, nutrient rich waters of the Labrador Current and 

a concurrent strengthening effect of warm, nutrient poor waters from the Gulf Stream on the Gulf 

of Maine (Townsend et al. 2015, Pershing et al. 2021). These results reinforce our previous work 

suggesting that the drivers of lobster recruitment may be linked to still poorly understood trophic 

interactions of lobster larvae in the pelagic food web. 

 

Changing Phenology  

By virtue of weekly sampling on the New Hampshire coast during the larval lobster season over 

30 years, we have gained a deeper understanding of phenological changes in both larval lobster 

and C. finmarchicus at this single well-studied location at the center of coastal Gulf of Maine.  

To our knowledge this study represents the first attempt to evaluate changes in the relative 

phenology of lobster hatch and larval occurrence with C. finmarchicus.  We found correlative 
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links between warming ocean temperature and timing of egg hatch, as well as first and last 

appearance of stage I larvae and postlarval lobster that indicate that the timing of critical 

developmental events is shifting.  From these data we quantified the shift in temporal overlap of 

larval lobster and C. finmarchicus over the years using a match/mismatch index (Cushing 1990).  

This study provides evidence that temporal overlap has declined in recent years: with increasing 

frequency since 2010, the C. finmarchicus season has been ending before the peak abundance of 

stage I lobster larvae. We speculate that in addition to declines in abundance of C. finmarchicus 

reported above, this reduced overlap between planktonic larval lobsters and their prey may have 

exacerbated recent declines in lobster recruitment.  

From our combined results we infer that it is not only the declines in abundance of C. 

finmarchicus, but also the widening temporal mismatch that may adversely affect recruitment 

success of lobster.  Similarly, in Western Australia, Lestang et al. (2015), found consecutive low 

years of western rock lobster, Panulirus cygnus, recruitment were more strongly linked to timing 

of spawning relative to favorable environmental conditions for larval development than to the 

volume of egg production.  Although the mechanisms may differ, our analysis also suggests the 

thermally controlled timing of the egg hatch is likely an important factor determining the co-

occurrence of larvae with their planktonic foods.  The temporal overlap of American lobster 

larvae with C. finmarchicus remains poorly understood on a wider geographic scale because of 

the lack of larval lobster sampling. Recently initiated larval sampling by Maine Department of 

Marine Resources and the Atlantic Offshore Lobstermen’s Association will dramatically increase 

our understanding of larval lobster dynamics in the future.  
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Conclusions, Implications and Future Research:  

The Gulf of Maine is warming at an alarming rate, and although we are beginning to understand 

the effects of these changes on fisheries in this region (Pershing et al. 2015, 2021, Richards 2016, 

Gonçalez-Neto et al. 2021), our understanding of the mechanisms at work behind these changes 

remain largely correlative.  The disconnect identified by Carloni et al. (2018) between lobster 

spawning stock biomass and postlarval abundance, despite the strong quantitative link between 

spawners and stage I larvae, narrowed the likely timing of decoupling of the spawner-recruit 

relationship to the early larval stages. With this report we provide supporting evidence that 

declines in C. finmarchicus, and perhaps other members of the zooplankton assemblage may be 

linked to that decoupling. In the analysis of the coastal New Hampshire data, Carloni et al. 

(2018) found little evidence of a correlation between postlarval lobster variability and potential 

plankton predators, such as gelatinous zooplankton, chaetognaths or ichthyoplankton.  The rising 

abundance of some of these planktonic carnivores evident in the EcoMon time series suggest we 

cannot entirely rule out the potential role of top-down mechanisms as a driver of larval lobster 

survival. The gelatinous zooplankton warrant more attention as they are especially difficult to 

sample, and few long-term time series exist.  Increases in some planktonic species, on the other 

hand, may reflect northwardly shifting ranges of warmer water species, such as the copepod, 

Nannocalanus minor, for example. 

 The significant correlation between declines in both the Labrador Slope Water and C. 

finmarchicus begin to link changes in potential oceanographic drivers to subsequent changes in 

the zooplankton assemblage, and specifically the abundance and phenology of C. finmarchicus 

that may have important implications for lobster larval survival. While the evidence presented 

here remains correlative, it poses testable hypotheses for continued analysis regarding the 
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mechanisms driving trends in lobster settlement, subsequent fishery recruitment and landings 

over the past decade. 

Recent low levels of YoY lobster recruitment in the Gulf of Maine have been a cause for 

concern to fishery managers, and although adult abundance is still at or near time series highs, 

signs of a decline in larger size classes have emerged in recent years.  Additionally, the 

Coastwide Ventless Trap Survey and the Maine-New Hampshire groundfish trawl survey have 

begun to show declines in sublegal lobster in coastal Maine (NOAA Statistical Areas 513 and 

514), with significant correlations to YoY indices (ASMFC 2020).  Further, commercial 

landings have recently begun to decline after reaching historic highs in 2016, as projected by 

Oppenheim et al. (2019).  This rate of decline in recruitment may be tempered to some degree 

by increased suitable thermal habitat in deep water and in the eastern Gulf (Goode et al. 2019), 

however, there is agreement among several surveys of initial signs of declining biomass.  In 

response to these concerns, Atlantic States Marine Fisheries Commission is developing an 

addendum to provide additional resiliency to the Gulf of Maine-Georges Bank lobster stock.  

The research presented here adds further support to the hypothesis that environmental changes 

impacting the pelagic food web and larval food abundance may be a key factor affecting lobster 

recruitment. Le Bris et al. (2018) noted that conservation measures implemented in the Gulf of 

Maine to protect spawning stock biomass set the stage for the fishery to capitalize on favorable 

conditions for recruitment during the boom years, and may help stave off fishery collapse in the 

event of a downturn.  

There is significant need for further research to elucidate trophic linkages and test 

hypotheses advanced in this study. Maine DMR’s Lobster Research Collaborative and the 

National Sea Grant’s Lobster Research Initiative are contributing resources that will provide 
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new insights into the physical and biological drivers of recruitment to this iconic fishery.  Field 

sampling and experiments will further improve our understanding of the mechanisms behind 

observed correlations between lobster larval dynamics and the pelagic food web that we suspect 

may play a key role in lobster benthic recruitment. 
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Table 1. Pearson coefficients for correlations among constructed time series. Colors indicate 
statistical significance.  See Table S-1 for full comparison of correlations for raw and 
modeled indices.  

 

 
 
 
 
 
 
 
 
Table 2. Correlation statistics by month between Calanus finmarchicus and postlarval lobster 

abundance in New Hampshire waters. 

 
 
  

ALSI Lobster

Combined Northeast 
Areas

Southwest 
Areas

NH 
Cfin

EcoMon
Cfin

Fundy 
Cfin

NH Cfin 0.78 0.65 0.76 NS

EcoMon Cfin 0.73 0.30 0.83 0.84 P < 
0.05

Fundy Cfin 0.68 0.67 0.59 0.67 0.46 P < 
0.01

LSW 0.66 0.37 0.70 0.73 0.82 0.28 P < 
0.001

Month Spearman’s r p
May 0.25 0.1887
June -0.15 0.4311
July 0.64 0.0002
August 0.58 0.0007
September 0.25 0.1751
October 0.25 0.1806
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Figure 1.  Gulf of Maine region depicting ALSI study sites (red dots) within the 14 respective 

study areas (black boundaries; bold black line denotes boundary between northeast and 
southwest study areas); coastal New Hampshire larval lobster and zooplankton sampling 
sites (black box; see Fig. S-1 for detail); DFO coastal Bay of Fundy zooplankton 
sampling station (blue dot); NEFSC basin-wide EcoMon sampling domain (darkened); 
and study area of the Northeast Channel used to calculate the Labrador Slope Water 
(LSW) index (blue box).   
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Figure 2. A. Modeled ALSI settlement trends (+/- 2SE) for all combined study areas in the Gulf 
of Maine. B. Modeled ALSI settlement trends for all combined study areas, as in A, and 
separate trends for southwestern and northeastern study areas.  
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Figure 3. Principal component (PC) analysis depicting three PCs of the zooplankton assemblage 

with differing dynamics. Horizontal bars indicate mean for the corresponding time series. 
Note precipitous increase in PC1 and decline in PC3 after 2010.  Species listed comprise 
those correlating most strongly, either directly or inversely with the PC at a threshold 
value above 0.25 or below -0.25.  In all cases species meeting these criteria correlated 
positively with their PC, with the exception of Nannocalanus minor in PC3. 
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Figure 4. Calanus finmarchicus indices for (A) coastal New Hampshire, (B) Gulf-wide EcoMon 

domain, and (C) Bay of Fundy.  (D) Labrador Slope Water index measured at the 
Northeast Channel of the Gulf of Maine.  Raw annual data (blue); smoothed (black) (+/- 
2SE). See Fig. 1 for sampling locations.  
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Figure 5. Mapped correlations between raw settlement time series (YoY + 1Year Olds) for 

individual study areas and the smoothed EcoMon C. finmarchicus index for the period 
1988 to 2018. Significant correlations are noted as * - p<0.05, ** - p<0.01, *** - 
p<0.001. Some higher correlations do not achieve the significance criteria due to shorter 
time series. Study area labels as in Fig. 1. 
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Figure 6. Mapped correlations between raw settlement time series (YoY + 1Year Olds) for 

individual study areas and the smoothed Calanus finmarchicus index for the period 1999 
to 2019 from Casault et al. (2020). Significant correlations are noted as   * - p<0.05, ** - 
p<0.01, *** - p<0.001. Some higher correlations do not achieve the significance criteria 
due to shorter time series. Study area labels as in Fig. 1. 
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Figure 7. Time series (left) and scatterplots (right) of northeast and southwest Gulf of Maine 

lobster settlement indices with (A) New Hampshire C. finmarchicus index, (B) NEFSC 
EcoMon C. finmarchicus index, and (D) Labrador Slope Water index. Points on 
scatterplots denote sampling year; lines connect consecutive years. See Table 1 for 
correlation statistics. 
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Figure 8.  Proportion of egg bearing lobsters with eggs in the process of hatching in the month 
of June, from commercial lobster sea sampling in New Hampshire coastal waters from 
2002 through 2017. See text for trend line statistics. 
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Figure 9. First appearance (A) and last appearance (B) of stage I lobster larvae, and total larval 

season duration from stage I through postlarva (C) from neuston net sampling along the 
New Hampshire coast, 1988 through 2018.  
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Figure 10. Shifts in C. finmarchicus phenology. (A) End of season, and (B) Season duration by 

year from 1988 through 2018. “Time periods” correspond to two-week blocks. Note, blue 
horizontal line in A denotes July 1 (time period 13); since 2009 the season has ended on 
or before that date.  
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Figure 11. Mismatch index-illustrating the decreasing overlap between peak stage I larval 

lobster and the end of the C. finmarchicus season.  A negative index indicates that peak 
stage I occurred after the end of C. finmarchicus season.  The downward trend is 
statistically significant (Mann-Kendal P=0.039). 
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SUPPORTING MATERIAL 
 
 

 
 
Figure S-1. Study areas for New Hampshire Fish and Game’s lobster sea sampling and 

Normandeau Associates lobster larval neuston tows and oblique macro-zooplankton 
tows. 

  



 41 

 
 

Figure S-2. Seasonal sampling rates for the NEFSC Ecosystem Monitoring surveys. 
Zooplankton dynamics were assessed for the combined Summer and Fall time periods. 

 
 
 


