
MaineD0T

$$
十
$$

Standard Details

November 2014 Edition

TABLE OF CONTENTS

DIVISION 200 - EARTHWORK
Section Detail No.
202 Pavement Butt Joint 202(01)
203 Muck Excavation and Waste Disposal 203(01)
Slope Blankets 203(02)
Back Slope Rounding Detail. 203(03)
DIVISION 500 - STRUCTURES
501 Pipe Piles 501(01-02)
H-Piles 501(03)
502 Concrete Joints 502(01)
Concrete Approach Slab 502(02)
Composite Concrete Superstructure Slab 502(03)
Concrete Curb 502(04-05)
Concrete Sidewalk on Bridges 502(06)
Precast Concrete Deck Panels. 502(07-14)
Bridge Drains 502(15-24)
504 Diaphragms 504(01-02)
Crossframes 504(03-06)
Diaphragm \& Crossframe Notes. 504(07)
Hand Hold Details 504(08-09)
505 Shear Connectors 505(01)
507 Steel Bridge Railing 507(01-14)
Steel Approach Railing 507(15-19)
Barrier Mounted Steel Bridge Railing 507(20-31)
520 Expansion Device - Gland Seal 520(01-08)
Expansion Device - Compression Seal 520(09-15)
521 Expansion Device - Finger Joint 521(01-12)
526 Temporary Concrete Barrier 526(01-04)
Permanent Concrete Barrier. 526(05-21)
Concrete Transition Barrier 526(22-38)
Texas Classic Rail 526(39-55)
535 Precast Superstructure. 535(01-017)
DIVISION 600 - MISCELLANEOUS CONSTRUCTION
603 Concrete Box Culvert Extension Using Metal Pipe 603(01)
Inlets. 603(02)
Concrete Inlet Endwall 603(03-06)
Culvert Pipe 603(09)
Concrete Pipe Ties 603(10-12)
604 Catch Basins 604(01)
Catch Basin Or Manhole 604(02-03)
Catch Basin \& Manhole Tops 604(04-08)
Catch Basin Type "F" 604(10-11)
Catch Basin Type A-1-P \& B-1-P 604(12-17)
Utility Structures 604(18)
605 Underdrain 605(01-03)
606 Mailbox Posts 606(01-02)
Guardrail 606(03-06)
Reflectorized Beam Guardrail Delineators 606(07)
Guardrail and Curb Placement. 606(08)
Guardrail 350 Flared Terminal Grading 606(09)
Buried Back Slope Guardrail Terminal 606(10-13)
Low Volume Guardrail End 606(14-15)
Guardrail Type 3 - Bridge Mounted 606(16-19)
Guardrail over Buried Structures 606(20)
Bridge Transition 606(21-22)
Terminal Connector 606(23)
Cable Releasing Terminal 606(24-29)
Reflectorized Flexible Guardrail Marker 606(30)
607 Fencing 607(01-09)
608 Concrete Sidewalk 608(01)
Detectable Warnings 608(02)
609 Terminal Curb 609(01)
Curb 609(02-04)
Gutter Grade Transition at Catch Basins 609(05)
Vertical Bridge Curb 609(06)
Curb Type 1 609(07)
Precast Concrete Transition Curb 609(08)
610 Tree Wells 610(01)
Stone Scour Protection 610(02-04)
620 Geotextiles 620(01-06)
621 B\&B Tree and Shrub Planting 621(01-02)
Container Tree/Shrub Planting 621(03)
626 Foundations for Traffic Signals, Highway Signing, \& Lighting 626(01-07)
Electrical Junction Box for Traffic Signals \& Lighting 626(08-09)
627 Pavement Markings 627(01-05)
634 Highway Lighting 634(01-03)
642 Concrete Step Quantities 642(01)
Cast in Place Reinforced Concrete Steps 642(02)
643 Traffic Signals 643(01-10)
645 Highway Signing - Type I Signs 645(01-02)
Highway Signing 645(03-05)
Highway Signing - H-Beam Posts 645(06)
Highway Signing - Delineators 645(07)
Highway Signing - State of Maine Signs 645(08)
Highway Signing - Installation of Type II Signs 645(09)
Highway Signing - Overpass Mounted Sign Support. 645(10-23)
652 Channelizing Devices 652(01-04)
Construction Signs 652(05-06)
Construction Traffic Control 652(07-15)
DIVISION 800 - MISCELLANEOUS DETAILS
801 Drives \& Entrances 801(01-09)
Pavement Transition At Bridges 801(10)
Pedestrian Ramps 801(11-17)
802 Erosion Control Blankets 802(01-02)
Hillside Diversions 802(03)
Silt Fence Sediment Barrier 802(04)
Culvert End Slope Treatment 802(05)
Riprap Downspout 802(06)
Temporary Slope Drains 802(07-08)
Energy Dissipater - Riprap Apron. 802(09)
Energy Dissipater - Plunge Pool 802(10)
Stone Check Dam 802(11)
Inlet Grate Protection 802(12-13)
Sediment Trap 802(14)
Temporary Stream Diversion 801(15)
Temporary Sediment Basin 802(16)
Construction Entrance 802(17)
Cellar Drain Connection 802(18)
803 Railroad Crossings 803(02-05)
Railroad Crossings - Traffic Control Devices Applications 803(06)
Railroad Crossings - Pavement Markings 803(07)
Railroad Crossings - Signals 803(08-13)

DIVISION 200 EARTHWORK

Remove existing povement surface to construct butt joint between existing and proposed bituminous pavements

Design or posted speed (miles/h): 65 "L" in feet/inch of thickness: 65

NOTES:

1. The above lengths are intended for profile grades of 2% or less. When profile grades are greater than 2% "L" may be adjusted to suit field conditions when directed by the Resident.
2. When constructing Butt Joints at intersections or ramps "L" shall be 15'/inch of thickness unless otherwise directed by the Resident.
3. Special attention shall be paid to curb sections to assure proper drainage and that there are no flat areas. "L" may be adjusted to suit field conditions when directed by the Resident.

$$
\begin{gathered}
\text { PAVEMENT OVERLAY } \\
\text { BUTT JOINT DETAIL (ROADWAYS) }
\end{gathered}
$$

NOTE:
When muck is excavated to a depth greater or less
Edge of
than what is shown on the plans, the lateral
limits for payment shall be determined
as shown or as specifically
directed by the
Resident.

~ MUCK EXCAVATION PAY LIMITS ~
Note:

~ DISPOSAL OF WASTE MATERIALS ~
(Waste Storage Area)

MUCK EXCAVATION AND WASTE DISPOSAL

~ SLOPE BLANKET - FILL SLOPE ~

SLOPE BLANKETS

When:
$x>5^{\prime}$, Then $T=5^{\prime}$
$X \leq 5^{\prime}$. Then $T=X$
This formula may be modified in the field by the Resident to avoid property damage.

DIVISION 500 STRUCTURES

NOTES:

1. Pile diameter and wall thickness shall be as indicated on the Design Drawings.
2. Pile tips shall be prefabricated cast steel tips with 60° conical points and internal flanges. Pile tips shall be approved by the Engineer.
3. Prefabricated internal splicer sleeves may be used if approved by the Engineer.
4. Refer to "Pipe Pile Splice" details for welding procedures.

$$
\text { PIPE } \underset{50 / 101)}{P I L E S}
$$

TABLE OF	WELD SIZES
Base Metal Thickness "T"	Minimum Number of Passes
$3 / 8^{"}, 7 / 16^{\prime \prime}$	3
$1 / 2^{"}, 9 / 16^{"}, 5 / 8^{\prime \prime}$	4
$11 / 16^{"}, 3 / 4^{"}, 13 / 16^{\prime \prime}$	5

NOTES:

1. All cutting shall be done with the use of a mechanical guide.
2. Use Manual Shielded - Arc Process and 6010 or $601 /$ electrodes, unless a different process has been approved by the Engineer.
3. Electrodes shall be dry when used, in accordance with A.W.S. Specification DI.5, as amended by AASHTO.

$$
\text { PIPE PILE } \text { SO/(02) } \text { SPLICE }
$$

TABLE OF	WELD SIZES
Base Metal Thickness "T"	Minimum Number of Passes
$3 / 8^{\prime \prime}, 7 / 16^{\prime \prime}$	3
$1 / 2^{\prime \prime}, 911 "^{"}, 58^{\prime \prime}$	4
$11 / 16^{"}, 3 / 4^{\prime \prime} ., 3 / 16^{\prime \prime}$	5

NOTES:

1. All cutting shall be done with the use of a mechanical guide.
2. Use Manual Shielded - Arc Process and 6010 or $601 /$ electrodes, unless a different process has been approved by the Engineer.
3. Electrodes shall be dry when used, in accordance with A.W.S. Specification DI.5, as amended by AASHTO.
4. Gouge root before welding the second side.

$$
H-P I L E E_{50(103)}^{S P L I C E}
$$

Apply 2 layers of heavy roofing felt using plastic roofing cement, or apply l layer of membrane waterproofing in accordance with Section 508 of the Standard Specifications. Recess the area to be covered unless otherwise indicated on the plans. Use where PVC waterstops cannnot be used and on horizontal joints where there is potential for leakage through the wall.

* Preformed Expansion Joint Filler

EXPANSION JOINT ~

* or match roadway grade, whichever is greater
~ SECTION ~

CONCRETE APPROACH SLAB

Welded Girder Blocking: Use Top of Web

NOTES:

1. Shear key and drip notch details are typical for all superstructure designs.
2. Blocking dimensions for construction shall be determined using the "Bottom of Slab Elevations" table shown on the Design Drawings. Theoretical Blocking will be given for reference purposes only. Do not use Theoretical Blocking for setting formwork.
3. Blocking on all beams shall be formed using the flush haunch detail shown.
4. On curved superelevated structures, where the distance between the exterior beam and the fascia varies over the length of the deck, the bottom of the slab overhang shall follow the superelevation cross - slope.

$$
\begin{gathered}
\text { COMPOSITE CONCRETE } \\
\text { SUPERSTRUCTURE SLAB } \\
\text { 502(03) }
\end{gathered}
$$

~ CURB WITH BITUMINOUS WEARING SURFACE ~

* 3" Hot Mix Asphalt + $1 / 4^{\prime \prime}$ (nom.) High Performance Waterproofing Membrane

-- CURB WITH CONCRETE WEARING SURFACE --

-- CURB WITH INTEGRAL WEARING SURFACE --

CONCRETE 502(05) $C U R B$

CONCRETE SIDEWALK ON BRIDGES 502(06)

$$
\text { PRECAST CONCRETE } \underset{502(08)}{(1)} \text { DECK PANELS }
$$

PRECAST CONCRETE $\underset{502(09)}{ }$ DECK PANELS

PRECAST CONCRETE 502(IO) DECK PANELS

PRECAST CONCRETE $\underset{502(I I)}{ }$ DECK PANELS

~ SECTION E-E (Contilevered Abutment)~

~ SECTION F-F (Integral Abutment)~

PRECAST CONCRETE DECK PANELS

PRECAST PANELS ON STEEL GIRDERS						
PanelType	Maximum Girder Spacing	$\begin{gathered} \text { Slab } \\ \text { ST" } \end{gathered}$	Panel	Number of Strands		
				Flange Width		
				$l^{\prime \prime}$-O"	$\leq 1-6{ }^{\prime \prime}$	$\leq 2^{\prime}-0^{\prime \prime}$
A/	$7^{\prime \prime} 6^{\prime \prime}$	$8{ }^{\prime \prime}$	31/2"	15	15	15
A2	$8^{\prime}-0^{\prime \prime}$	$8^{\prime \prime}$	3/2"	15	15	15
A3	$8^{\prime}-6^{\prime \prime}$	$8^{\prime \prime}$	$31 / 2^{\prime \prime}$	17	16	16
A4	$9^{\prime}-0^{\prime \prime}$	$8^{\prime \prime}$	3/1/2"	19	17	17
A	$9^{\prime}-6^{\prime \prime}$	$8^{\prime \prime}$	$31 / 2^{\prime \prime}$	21	19	18
B	$10^{\prime}-0^{\prime \prime}$	$8^{1 / 2 "}$	$31 / 2^{\prime \prime}$	22	21	19
C	$10^{\prime}-6^{\prime \prime}$	$9^{\prime \prime}$	3/1/2"	24	22	20
D	/1'-0'	91/2"	$3 / 2^{\prime \prime}$	27	24	22
E	/1'-6"	$10^{\prime \prime}$	31/2"	30	27	25
F	$12^{\prime}-0^{\prime \prime}$	$10^{1 / 2 "}$	$31 / 2^{\prime \prime}$	33	30	28

NOTES:

1. Precast Concrete Deck Panels shall be fabricated in accordance with Section 535 of the Standard Specifications.
2. The contractor shall submit working drowings showing the exact layout of panel types and sizes.
3. Refer to the Design Drowings for structures with curved beams or angled splices.
4. Joints at expansion piers shall be treated similarly to the abutment joint details.
5. Panel widths of less than $8^{\prime}-0^{\prime \prime}$ may be used. Provide strands in the ratio of the smaller panel width to $8^{\prime}-0^{\prime \prime}$. multiplied by the number of strands given in the table, rounding up to the next even number of strands. The minimum panel width is $3^{\prime}-0^{\prime \prime}$
6. Prestressing strands shall be $3 / 8$-in. diameter Grade 270 seven - wire Iow relaxation strands conforming to the requirements of ASTM A 416. Initial tension shall be 17.2 kips per strand.
(Continued)

PRECAST CONCRETE DECK PANELS
 502(13)

7. A mat of \#3 reinforcing bars spaced at 6 inches O.C. in each direction may be substituted for welded wire fabric. The welded wire fabric or the reinforcing bars shall have the same corrosion resistance characteristics and lor coating system as the reinforcing steel used in the cast-in -place portion of the deck slab.
8. Concrete for panels shall have a minimum 28 day compressive strength of 5000 psi and a minimum release strength of 4000 psi. Permeability shall be as required for the cast - in - place portion of the deck slab.
9. Precast deck panels require the use of 7 -in. long shear connectors rather than the standard 5-in. length. Payment for any additional costs will be considered incidental to the precast deck panel pay item.
10. Where I^{\prime}-O" wide girder flanges are specified on the Design Drawings, the transverse shear connector spacing shall be $31 / 2$ inches rather than the standard 6-in. spacing.
II. When flange thicknesses differ or flange cover plates are used, the temporary blocking thickness shall vary. Precast panels shall align vertically to within 1/4 inch.
11. High - density expanded polystyrene foam shall be cut in the field to the required thickness.
12. Mortar to be used for support under the deck panels shall have an approved high range water reducing additive.
13. The specific reinforcing steel layout for the cast-in - place portions of the slab shall be as shown on the Design Drowings.
14. If there is a conflict between these Standard Details and the Design Drowings, the requirements of the Design Drowings shall be followed.

~ BRIDGE DRAIN TYPE "B" OR "C" PLAN ~
BRIDGE DRAINS
502(15)

~ BRIDGE DRAIN TYPE "B"ELEVATION ~

~ DRAIN TYPE "A/" OR "A2" TOP VIEW ~

~ DRAIN TYPE "Al" OR "AZ" SECTION ~

BRIDGE DRAINS
502(19)

~ DRAIN TYPE "B "TOP VIEW ~

~ DRAIN TYPE "B" SECTION ~
BRIDGE DRAINS
502(20)

~ WELD DETAIL ~
BRIDGE DRAINS

Flare bars to clear drain

Cut I transverse bar as necessary (Top \& Bottom)
~ SLAB REINFORCING PLAN - DRAIN TYPE "B"OR "C"~

$$
\underset{502(23)}{\text { BRIDGE }} \underset{\text { DRAINS }}{ }
$$

1. All plates shall be $1 / 4$ inch thick.
2. The grating shall be a commercial heavy -duty grating with $1 / 2 " \times 5 / 16^{\prime \prime}$ bearing bars spaced at $23 / 8$ inches and $3 / 8 " \phi$ cross bars spaced at 4 inches. The grating shall be centered in the drain top.
3. The $1 / 2 " \phi$ drain holes are not required with concrete wearing surfaces.
4. Drains, including C 9×13.4, shall be blast cleaned to the requirements of SSPC-SP6/NACE 3 and galvanized in accordance with ASTM A 123.
5. For structural steel beams / girders, the WT 6×13 and associated bolts shall meet the material and protective coating requirements of the structural steel.
6. For structural concrete beams / girders, the WT 6x/3 shall be galvanized in accordance with ASTM A 123 and A 153 or B 695. Concrete anchors shall be selected from the MaineDOT Qualified Products List.
7. Shear connectors welded to the top flange of steel beams / girders may require adjustment to clear the bridge drains.
8. If the minimum thickness of concrete below the drain pan is 2 inches or less, the concrete haunch shall be extended as shown.
9. For drains installed on bridges with l-inch thick integral concrete wearing surfaces, the drain pan depth shall be reduced from $l^{\prime}-O^{\prime \prime}$ to $O^{\prime}-9^{\prime \prime}$.
10. Payment for bridge drains will be as specified under Subsection 502.19 of the Standard Specifications.
II. Payment for adjusting and for providing the additional reinforcing steel at bridge drains will be considered incidental to Contract items.
11. If there is a conflict between these Standard Details and the Design Drowings, the requirements of the Design Drawings shall be followed.

MATERIALS

Downspout ASTM A 500, Grade B.
Shapes \& plates AASHTO M 270M/M 270, Grade 50 Bolts and nuts AASHTO A 307, Grade C

~TYPE CI \& CZ ~

DIAPHRAGMS

* May be sloped to meet the $31 / 2^{\prime \prime}$ minimum from flange to channel.

$$
\begin{aligned}
& \frac{2^{\prime \prime} \text { at Bearing stiffen }}{2^{\prime \prime} \text { min. }-31 / 2^{\prime \prime} \text { max. all } 0} \\
& \sim \text { TYPE E \& F } \sim
\end{aligned}
$$

$$
\sim \text { TYPE G ~ }
$$

CROSSFRAMES

~TYPE J~
Refer to P. 504(07)

* with lateral system
** without lateral system

$$
\frac{2^{\prime \prime} \text { at Bearing stiffeners }}{2^{\prime \prime} \text { min. }-31 / 2^{\prime \prime} \text { max. all others }}-\perp
$$

~TYPE K ~

CROSSFRAMES

CROSSFRAMES

CROSSFRAMES $_{504(06)}$

NOTES:

1. Steel for diaphragms, crossframes, connection plates, gussets and stiffeners shall be as designated on the Design Drawings.
2. All welds for diaphragms, crossframes, connection plates, gussets and stiffeners shall terminate $5 / 8^{\prime \prime} \pm 1 / 8^{\prime \prime}$ from the ends of the plates.
3. Bolt holes shall be 15/16". The minimum edge distance shall be $11 / 2^{\prime \prime}$ unless otherwise shown on the Design Drawings. Oversized holes may be used with the permission of the Resident.
4. Connection plates and gussets shall be $3 / 8$ " minimum thickness. Connection plates shall be 7" minimum width and full web depth. The plate thickness for stiffeners and bent connection plates shall be as shown on the Design Drowings.
5. Bearing stiffeners shall be mill - to - bear on the bottom flange and tight fit to the top flange.
6. Intermediate stiffeners not intended to carry concentrated loads shall be tight fit to both flanges. Intermediate stiffeners used as connection plates shall be detailed as connection plates.
7. Connection plates and stiffeners used as connection plates shall be welded to the web and flanges on both sides of the plates.

~ TYPICAL WELD DETAILS ~

Intermediate support $\sim L 5 \times 3 \times 3 / 8$

$$
\sim E L E V A T I O N \sim
$$

NOTES:

1. Hand - hold bars shall be installed on the inside of exterior beams and on both sides of interior beams when called for on the Design Drawings.
2. Termination and splicing of hand - hold bars shall occur at stiffeners or connection plates. Angle supports shall be used at intermediate locations only. All termination and splice plates shall be a minimum of $1 / 2$ inch thick. Additional stiffeners shall be provided where necessary to meet the described requirements.
3. Hole sizes for bolts and hand - hold bars shall be $1 / 16$ inch larger than the bolt I bar size. Edge distances for holes shall be $1 / 2$ inches unless otherwise shown.
4. For unpainted applications, the hand - hold bar and nuts shall be galvanized to conform to ASTM M IIIM/M III.

MATERIALS:

With unpainted structural steel - All steel.....AASHTO M 270/M 270M. Gr. 50W With painted structural steel-All steel.........AASHTO M 270M/M 270, Gr. 36 Heavy hex nuts for l" ϕ bar AASHTO M 291

NOTES:

1. Refer to Design Drawings for dimensions " A " and " B ", stud pitch and skew angle.
2. Studs shall project a minimum of $2^{\prime \prime}$ above the bottom of the slab.

~ STUD DETAIL ~

SHEAR CONNECTORS

STEEL BRIDGE RAILING

$$
\text { ~ } 2 \text { - BAR TRAFFIC RAILING ~ }
$$

Concrete Transition Barrier (Typ.)

~ 4-BAR TRAFFIC / PEDESTRIAN RAILING ~

* Including Rail Bar Cap (Typ.)

$$
\text { STEEL BRIDGE } \underset{507(02)}{\operatorname{RAILING}}
$$

STEEL BRIDGE RAILING

Rail Bars:
TS $8 \times 4 \times 5 / 16$ (1)
TS $4 \times 4 x^{1 / 4}$ (1)

STEEL BRIDGE $\underset{507(04)}{\text { RAILING }}$

Rail Bars:
TS $8 \times 4 \times 5 / 16$ (1)
TS $4 x 4 x^{\prime} / 4$ (2)

STEEL BRIDGE RAILING

Rail Bars:
$\begin{array}{ll}\text { TS } & 8 \times 4 \times 5 / 16 \\ \text { TS } & 4 \times 4 x^{\prime} / 4\end{array}$

Rail Bars:
$\begin{array}{ll}\text { TS } & 8 \times 4 \times 5 / 16 \\ \text { TS } & 4 \times 4 x^{1} / 4\end{array}$

STEEL BRIDGE RAILING 507(07)

~ POST \& BASE PLATE PLAN ~

STEEL BRIDGE RAILING 507(08)

~ RAIL BAR CAP ~
Note: Match corner radius of rail bar

STEEL BRIDGE RAILING

~ RAIL BAR SPLICE SECTION ~

* Weld nuts to plate before assembling splice tube

~ RAIL BAR EXPANSION JOINT SECTION ~
For details not shown, see "Rail Bar Splice Section"

STEEL BRIDGE RAILING

Account for weld flash when positioning splice
$3 / 4 " \phi \times 1 / 2 "$ Sch. 40 pipe spacer at expansion splice only

ERail Bor

\& $5 / 8^{\prime \prime} \phi$ tapped hole in splice bar for $5 / 8^{\prime \prime} \phi \times 13 / 4$ " cap screw with plain hardened washer

\$ $13 / 16^{\prime \prime} \phi$ hole in rail bar (Typical Splice)
$\mathbb{C} 1 / 8 " \times$ "C" slot in rail bar (Expansion Splice)

STEEL BRIDGE RAILING

\& Rail Bar Splice or Exp. Joint

~ RAIL BAR SPLICE \& EXPANSION JOINT DETAIL ~ (Bottom View)

SPLICE		
	TUBE DIMENSIONS	
	TS $\times 4$	TS 4×4
Top \& Bot. Plates	$2 / / 2 \times 3 / 8 \times L^{\prime \prime}$	$25 / 8 \times 3 / 8 \times{ }^{\prime \prime} L^{\prime \prime}$
Side Plates	$63 / 4 \times 3 / 8 \times L^{\prime \prime}$	$27 / 8 \times 3 / 8 \times{ }^{\prime \prime} L^{\prime \prime}$

SPLICE \& EXPANSION JOINT TABLE					
"T"	" ${ }^{\text {a }}$	"B"	"C"	"L"	" ${ }^{\prime \prime}$
Splice	$4^{\prime \prime}$	$2 "$	--	$1^{\prime \prime}-8^{\prime \prime}$	$3 / 4 "$
$\leq 4^{\prime \prime}$	$4^{\prime \prime}$	$2^{\prime \prime}$	21/2"	$1{ }^{\prime \prime}-8^{\prime \prime}$	21/2"
$>4^{\prime \prime} \leq 61 / 2^{\prime \prime}$	51/2"	21/2"	31/2"	$2^{\prime}-0^{\prime \prime}$	$33 / 4{ }^{\prime \prime}$
$>6^{\prime} / 2^{\prime \prime} \leq 9^{\prime \prime}$	61/2"	31/2"	$9^{\prime \prime} \times$	$2^{\prime}-4^{\prime \prime}$	5"
$>9^{\prime \prime} \leq 13^{\prime \prime}$	81/2"	4/2"	//" ${ }^{\text {* }}$	$2^{\prime}-10^{\prime \prime}$	7"

MATERIALS:
Rail bars \qquad ASTM A 500, Grade B Rail posts, shapes \& plates .-..................AASHTO M 270M/M 270, Grade 50 Anchor studs, washers \& heavy hex nuts...............AASHTO M 314. Grade 105 All other bolts \& nuts (unless noted)AASHTO A 307, Grade C

STEEL BRIDGE RAILING

NOTES:

1. All work and materials shall conform to the provisions of Section 507 Railings of the Standard Specifications.
2. Tubing shall meet the longitudinal CVN minimum requirements of 15 ft -lb at $0^{\circ} F$ or proportional values of sub - size specimens. Testing shall be done in accordance with ASTM A 673. The H frequency shall be used and the material shall be as - rolled.
3. Twenty - five percent of the post - to - base welds in a production lot shall be tested by the Magnetic Particle Method. If rejectable discontinuities are found, another twenty - five percent of that production lot shall be tested. If rejectable discontinuities are found in the second twenty - five percent, all post - to - base welds in that lot shall be tested. Acceptance criteria shall be in accordance with the latest edition of the AWS Dl. 5 Bridge Welding Code.

STEEL BRIDGE RAILING

4. All exposed cut or sheared edges shall be broken and free of burrs. The inside weld flash of tubing shall be removed at splices and expansion joints.
5. Rail posts shall be set normal to grade unless otherwise shown.
6. Lengths of rail bar shall be attached to a minimum of 2 rail posts and to at least 4 posts whenever possible.
7. Rail bar expansion joints shall be provided in any rail bay spanning a superstructure expansion joint. Expansion joint width shall be " X " at $45^{\circ} \mathrm{F}$ and will be adjusted in the field as directed by the Resident. Refer to detail and table on page 507(I2) for dimension "X".
8. All parts shall be galvanized after fabrication in accordance with ASTM A 123, except that hardware shall meet the requirements of either ASTM A 153 or ASTM B 695, Class 50, Type I. Parts except hardware shall be blast cleaned prior to galvanizing in accordance with SSPC - SP6.
9. Anchor bolts shall be set with a template. Nuts securing the post base plate shall be tightened to a snug fit and given an additional 1/8 turn.
10. Rail bars shall be attached to posts using $3 / 4 " \phi \sim$ ASTM A 307 bolts ($5 / 8^{\prime \prime} \phi \sim$ ASTM A 325 bolts may be substituted) inserted through the face of the rail bar. Bolts shall be round or dome head and may be rib neck, slotted, wrench head or tension control (TC or twist-off). Holes in posts shall be $1 / 16^{\prime \prime}$ larger than the diameter of the bolt. Holes in rail bars shall be drilled to size as follows:

Slotted, wrench head or TC bolts: $1 / 16^{" 1}$ larger than bolt diameter Rib neck bolts: Size appropriate to accomodate an interference fit

All bolts for fastening the rail bars to the posts shall be 6 inches in length and shall include a flat washer under the nut.
ll. Holes in rail bars shall be field - drilled and shall be coated with an approved zinc - rich paint prior to erection.
12. Bolts in expansion joints shall be tightened only to a point that will allow rail movement.
13. The alternate curb projection shown for the curb - mounted railings is intended for use with granite bridge curb.
14. If there is a conflict between these Standard Details and the Design Drawings, the Contractor shall notify the Resident immediately.

STEEL BRIDGE RAILING
 507(14)

~ STEEL APPROACH RAILING, $2-B A R$

* See Design Drowings for dimensions

STEEL APPROACH RAILING

STEEL APPROACH RAILING

NOTES:

1. Refer to Steel Bridge Railing pages for additional details, notes and materials specifications.
2. The bottom rail bar may be bent to shape from one continuous length of stock provided that the fabricator can achieve the required geometry without deforming the tube.
3. Rail bar welds shall have a minimum penetration of 80% as demonstrated by a test weld performed by the fabricator.
4. To facilitate field fit - up of the approach railing, posts shall be set loosely into fiber form tubes while parts are being assembled. Post holes shall be backfilled with Class "S" or other concrete mix approved by the Resident. Payment will be considered incidental to the Steel Approach Railing pay item.
5. Granular material shall meet or exceed the requirements of Subsection 703.19, Granular Borrow. Payment for granular material and for any excavation necessary to install the rail posts will be considered incidental to the Steel Approach Railing pay item.
6. The precast concrete transition curb shall meet the provisions of Section 609 - Curbing of the Standard Specifications. The bridge end of the curb shall be saw - cut in the field to fit flush against the backwall, as dictated by the bridge skew angle and the profile grade. Where curbing is specified on the adjacent highway, the transition shall be modified accordingly. Payment for transition curb will be considered incidental to the Steel Approach Railing pay item.
7. The Bridge Transition Type " 2 " as shown is a slight modification of the standard Type "2" detail shown in Section 606. The 3/4" ϕ bolts and back - up plate will be considered as part of the Steel Approach Railing pay item.
8. After installation of the guard rail is complete, upset the threads on the anchor bolts in three (3) places around each bolt, at the junction of the nut and the exposed thread, with a center punch or similar tool.
9. If there is a conflict between these Standard Details and the Design Drowings, the requirements of the Design Drawings shall be followed.

STEEL APPROACH RAILING
507(19)

bARRIER - MOUNTED STEEL BRIDGE RAILING 507(20)

BARRIER - MOUNTED $\underset{507(21)}{\text { STEEL BRIDGE RAILING }}$

> ~ TYPICAL RAIL SECTION ~ (I-Bar Pedestrion Railing)

BARRIER - MOUNTED $\underset{\text { 507(23) }}{\text { STEEL BRIDGE RAILING }}$

~ POST \& BASE PLATE PLAN ~

~ SPACER PLATE PLAN ~

~ END POST \& BASE PLATE PLAN ~

~ END SPACER PLATE PLAN ~

Heavy hex nut
with washer

~ RAIL SPLICE SECTION ~

~RIBBED NECK BOLT ~ (with washer \& lock nut)

~RAIL BAR SPLICE / EXPANSION JOINT ~

$\begin{aligned} & \text { RAIL BAA } \\ & \text { EXPANSION } \end{aligned}$	SPLICE \& JOINT TABLE	
"T"	"L"	" ${ }^{\text {" }}$
Splice	$1{ }^{\prime \prime}-8^{\prime \prime}$	$3 / 4 "$
$\leq 4^{\prime \prime}$	${ }^{\prime}-8{ }^{\prime \prime}$	21/2"
$>4^{\prime \prime} \leq 61 / 2^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$4^{\prime \prime}$
$>6^{\prime} / 2^{\prime \prime} \leq 9^{\prime \prime}$	$2^{\prime}-4^{\prime \prime}$	5"
$>9^{\prime \prime} \leq 13^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$	7"

"T" = Total Movement

SPLICE TUBE	(- Bar Railing)
Top \& Bot. Plates	Bar $1 \times 3 / 8 \quad \times$ "L"
Side Plates	Bar $13 / 4 \times 3 / 8 \quad x^{" L "}$

SPLICE TUBE	(2 - Bar Railing)
Top \& Bot. Plates	Bar $1 \times 3 / 8 x^{\prime \prime} L^{\prime \prime}$
Side Plates	Bar $23 / 4 x^{3 / 8} \times$ "L"

BARRIER - MOUNTED STEEL BRIDGE RAILING

NOTES:

1. All work and materials shall conform to the provisions of Standard Specifications Section 507 - Railings.
2. All exposed cut or sheared edges shall be rounded and free of burrs.
3. All parts shall be galvanized after fabrication in accordance with ASTM A 123, except that hardware shall meet the requirements of ASTM A 153. Parts shall be blast-cleaned prior to galvanizing in accordance with SSPC - SP6.
4. Rail posts shall be set normal to grade unless otherwise indicated.
5. Lengths of rail bar shall be attached to a minimum of 2 rail posts and to at least 4 posts whenever possible.
6. Rail bar expansion joints shall be provided in any rail bay spanning a superstructure expansion joint. Expansion joint width shall be " X " at $45{ }^{\circ} \mathrm{F}$ and will be adjusted as directed by the Resident.
7. Holes for ribbed - neck bolts shall be field - drilled to an appropriate size to produce an interference fit with the bolts.
8. Rail post anchoring nuts shall be tightened to a snug fit and given an additional $1 / 8$ turn.
9. Ten percent of the post - to - base welds in a production lot shall be tested by the Magnetic Particle Method. If rejectable discontuities are found, another ten percent of that lot shall be tested. If rejectable discontuties are found in the second ten percent, all post - to - base welds shall be be tested. Acceptable criteria shall be in accordance with the in edition of the AWS Dl. 5 Bridge Welding Code.
10. All butt joint welds shall have a minimum penetration of 60 percent.
II. If there is a conflict between these Standard Details and the Design Drawings, the requirements of the Design Drawings shall be followed.

MATERIALS:

Rail bars
ASTM A500
All other shapes \& plates AASHTO M 270M/M 270, Grade 36
Threaded studs, washers \&
exposed heavy hex nuts AASHTO M 314. Grade 105 All other bolts \& nuts ASTM A 307. Grade C

BARRIER - MOUNTED STEEL BRIDGE RAILING 507(31)

EXPANSION DEVICE - GLAND SEAL

EXPANSION DEV $\underset{520102)}{ }-G L A N D ~ S E A L$

~ TYPICAL SECTION ~ EXPANSION DEVICE ~
\& $15 / 16^{\prime \prime} \times 2^{\prime \prime}$ slotted holes for $7 / 8^{\prime \prime} \phi$ bolt
~ Superstructure ~

EXPANSION DEVICE - GLAND SEAL

$$
\text { EXPANSION DEVICE }- \text { GLO(04) }-G A N D \text { SEAL }
$$

$$
\begin{gathered}
\sim \text { EXPANSION DAM ELEVATION } \sim \\
\text { EXPANSION DEVICE } \\
\text { 520(05) }
\end{gathered}
$$

EXPANSION DEV $\underset{520(06)}{ }-G L A N D ~ S E A L$

EXPANSION DEVICE - GLAND SEAL

NOTES:

1. Each "Expansion Device - Gland Seal" consists of one backwall element and one superstructure element (or two superstructure elements over piers) with expansion dams as required.
2. Refer to Design Drawings for dimensions, slopes, skew and all other information necessary to fabricate and install each Expansion Device.
3. The Expansion Device shall be fabricated to be installed normal to grade.
4. Anchor studs shall be installed using automatically timed stud welding equipment.
5. The Expansion Device shall be set to an opening of two inches in the fabrication shop. The joint opening shall be adjusted for temperature in the field at the time of installation using the following formula:

$$
0.00008 \times " D " \times " \Delta T "=\text { Adjustment (in inches) }
$$

" D " is the distance in feet between the backwall and the nearest fixed bearings (for joints at abutments) or between the fixed bearings at either side of the expansion joint (for joints at piers). " $\triangle T$ " is the difference between the temperature of the structure and $45{ }^{\circ} \mathrm{F}$.

A structure temperature above $45{ }^{\circ} \mathrm{F}$ will result in a smaller joint opening.
6. Welding to reinforcing steel will be allowed in the top of the abutment backwall above the block - out joint.
7. The slab and backwall concrete shall be in place before the Expansion Device is fixed in position. No allowance for movement due to dead load deflection is necessary.
8. The concrete in the block - out may be placed with the curb / sidewalk concrete. An approved epoxy bonding agent shall be applied to all vertical surfaces of the block - out before making the final concrete placement.
9. If there is a conflict between these Standard Details and the Design Drowings, the requirements of the Design Drawings shall be followed.

MATERIALS:
All shapes and plates AASHTO M 270M/M 270, Grade 36

EXPANSION DEVICE - GLAND SEAL

Roadway Soadway Sidewalk Control line)

EXPANSION DEVICE - COMPRESSION SEAL

Section A-A / 520(09)
~ ELEVATION ~ TYPICAL INSTALLATION ~

EXPANSION DEVICE - COMPRESSION SEAL

~ TYPICAL SECTION ~

EXPANSION DEVICE - COMPRESSION SEAL

EXPANSION DEVICE - COMPRESSION SEAL

~ ELEVATION - SIDEWALK EXPANSION DAM ~

Section Y-Y / 520(13)
Slope of curb plates shall match slope of curb shown on Design Drowings. $\rightarrow 3 / 8 "$ Plate

Section Z-Z / 520(I3)
~ SIDEWALK EXPANSION DAM SECTIONS ~

EXPANSION DEVICE - COMPRESSION SEAL

NOTES:

1. Each "Expansion Device - Compression Seal" consists of one backwall element and one superstructure element (or two superstructure elements over piers) with expansion dams as required.
2. Refer to Design Drawings for dimensions, slopes, skew and all other information necessary to fabricate and install each Expansion Device.
3. The Expansion Device shall be fabricated to be installed normal to grade.
4. Anchor studs shall be installed using automatically timed stud welding equipment.
5. Dimension " X " at $45{ }^{\circ} \mathrm{F}$ shall be determined as follows:

$$
\text { (0.85 x nominal seal width) }-1 / 2 \text { MR }
$$

The Movement Rating (MR) for each seal shall be as determined by MaineDOT for the make and type of seal to be provided. Dimension " X " at $45{ }^{\circ} \mathrm{F}$ and the make and type of seal shall be shown on the Shop Detail Drawings.
6. Final adjustment for temperature shall be made in the field according to the "Compression Seal Adjustment Chart" shown on the Design Drawings. The adjustment shall be measured parallel to the centerline of construction.
7. Welding to reinforcing steel will be allowed in the top of the abutment backwall above the block - out joint.
8. The slab and backwall concrete shall be in place before the Expansion Device is fixed in position. No allowance for movement due to dead load deflection is necessary.
9. The concrete in the block - out may be placed with the curb / sidewalk concrete. An approved epoxy bonding agent shall be applied to all vertical surfaces of the block - out before making the final concrete placement.
10. If there is a conflict between these Standard Details and the Design Drowings, the requirements of the Design Drawings shall be followed.

MATERIALS:
All shapes and plates AASHTO M 270M/M 270, Grade 36

EXPANSION DEVICE - COMPRESSION SEAL

Construction or other designated line

> EXPANSION DEVICE - FINGER JOINT

〔 $3 / 4^{\prime \prime} \phi$ vent hole @ $2^{\prime}-O^{\prime \prime}(T y p$.

-- TYPICAL FINGER JOINT SECTION --

-- FINGER JOINT ELEVATION AT BREAK IN CROSS SLOPE --
EXPANSION DEVICE - FINGER JOINT

-- ANCHOR STUD DETAIL --

-- ANCHOR STUD LAYOUT PLAN (BOTTOM VIEW) --
EXPANSION DEVICE - FINGER JOINT

~ ADJUSTMENT DEVICES ~
Symmetical both sides of joint except as shown

~ FINGER DETAIL ~

EXPANSION DEVICE - FINGER JOINT

~ FINGER CUTTING DETAIL ~ (Skew back on left)

Note; Cut from one plate and match mark * "K" is "K" dimension prior to cutting plate

EXPANSION DEVICE - FINGER JOINT

~ FINGER CUTTING DETAIL ~ (Skew ahead on left)

Note: Cut from one plate and match mark * "K" is "K" dimension prior to cutting plate

EXPANSION DEVICE - FINGER JOINT

ExpANSION DEVICE - FINGER JOINT

See Design Drawings

~ SECTION C-C ~
~ BENT STUD DETAIL ~

~ DETAIL "D"~
~ DETAIL "E"~
EXPANSION DEVICE $\underset{\text { 52(10) }}{ }$ - FINGER JOINT

$$
\text { EXPANSION DEVICE } \underset{52(\prime \prime)}{ } \text { - FINGER JOINT }
$$

NOTES:

1. Each "Expansion Device - Finger Joint" consists of one backwall element and one superstructure element (or two superstructure elements over piers) with expansion dams as required.
2. Refer to Design Drawings for dimensions, slopes, skew and all other information necessary to fabricate and install each Expansion Device.
3. The Expansion Device shall be fabricated to be installed normal to grade.
4. Anchor studs shall be installed using automatically timed stud welding equipment.
5. The Expansion Device shall be installed with a joint opening of "J" at $45{ }^{\circ} \mathrm{F}$. The joint opening shall be adjusted for temperature in the field at the time of installation using the following formula:

$$
0.00008 \times " D " \times " \Delta T "=\text { Adjustment (in inches) }
$$

" D " is the distance in feet between the backwall and the nearest fixed bearings (for joints at abutments) or between the fixed bearings at either side of the expansion joint (for joints at piers). " $\triangle T$ " is the difference between the temperature of the structure and $45^{\circ} \mathrm{F}$.

A structure temperature above $45{ }^{\circ} \mathrm{F}$ will result in a smaller joint opening.
6. Welding to reinforcing steel will be allowed in the top of the abutment backwall above the block - out joint.
7. After the Expansion Device is in final position, weld the bar and angle of the adjustment devices together with a $1 / 4$-in. fillet weld.
8. The slab and backwall concrete shall be in place before the Expansion Device is fixed in position. No allowance for movement due to dead load deflection is necessary.
9. The concrete in the block - out may be placed with the curb / sidewalk concrete. An approved epoxy bonding agent shall be applied to all vertical surfaces of the block - out before making the final concrete placement.
10. If there is a conflict between these Standard Details and the Design Drowings, the requirements of the Design Drowings shall be followed.

MATERIALS:
All shapes and plates AASHTO M 270M/M 270, Grade 36

EXPANSION DEVICE - FINGER JOINT

~ PLAN ~

TEMPORARY CONCRETE BARRIER

~ BOTTOM CONNECTOR ~

1. Alternate barrier designs may be submitted for approval by the Resident.
2. Form a $3 / 4$-in. chamfer or radius on all exposed edges.
3. Galvanize connectors after forming. Connectors may be completely galvanized.
4. Galvanize the connector pin assembly after fabrication. Burr the threads on the pin after installing the nut.
5. The reinforcement shown is primarily for the impact performance of the barrier. Additional reinforcement may be advisable for handling the barrier and for ensuring its integrity over its service life.
6. When serving the additional function of channelizing traffic, the barrier shall be supplemented by standard delineators, channelizing devices or pavement markings.
7. Barrier Deliniators shall be Bi-Directional with a minimum effective reflective area of 8.0 in. 2 as approved by the Resident. The reflector shall preferably be of Methyl Methacrylate, and the housing of Acrylonitaile Butadiene Styrene. As an alternative reflectors may be mounted on the top of the barrier.

~ PERMANENT CONCRETE BARRIER TYPE IIIA ~

PERMANENT CONCRETE BARRIER

~ CANTILEVERED END AT EXPANSION JOINT ~

PERMANENT CONCRETE BARRIER

PERMANENT CONCRETE BARRIER

For Wearing Surface ("T") details, refer to Section 502 ~ Concrete Curb

TABLE OF DIMENSIONS - TYPE IIIA				
Wearing Surface Type	"P/"	"P2"	"T"	"H"
Bituminous	$1^{\prime}-4 / 4^{\prime \prime}$	II'/4"	$31 / 4 "$	$2^{\prime \prime}-11 / 4 "$
Unreinforced Concrete	1 '-3"	$10^{\prime \prime}$	$2^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$
Integral	/'-/"	$8^{\prime \prime}$	$O^{\prime \prime}$	$2^{\prime}-8^{\prime \prime}$

For Wearing Surface ("T") details, refer to Section 502 ~ Concrete Curb

~ CANTILEVERED REINFORCING ELEVATION ~ (Type IIIA)

~ CANTILEVERED RECESS SECTION ~

PERMANENT CONCRETE BARRIER

PERMANENT CONCRETE BARRIER

For Wearing Surface ("T") details, refer to Section 502 ~ Concrete Curb

TABLE OF DIMENSIONS - TYPE IIIB				
Wearing Surface Type	"P3"	"P4"	"T"	"H2"
Bituminous	1'-63/4"	/1/4"	31/4"	$3^{\prime}-9^{\prime} / 4{ }^{\prime \prime}$
Unreinforced Concrete	$1 '-51 / 2 "$	$10^{\prime \prime}$	$2^{\prime \prime}$	3'-8'
Integral	$1^{\prime}-31 / 2^{\prime \prime}$	$8^{\prime \prime}$	$O^{\prime \prime}$	$3^{\prime}-6{ }^{\prime \prime}$

For Wearing Surface ("T") details, refer to Section 502 ~ Concrete Curb

~ CANTILEVER REINFORCING ELEVATION ~ (Type IIIB)

PERMANENT CONCRETE BARRIER

PERMANENT CONCRETE BARRIER

~ CANTILEVERED END SECTION ~ (Type IIIB)

BARRIER TYPE IIIA REINFORCING STEEL				
Mark	With Normal End		With Cantilevered End	
	Quantity	Length	Quantity	Length
FA500	As req'd	30'-0' max.	As req'd	30'-0' max.
FA501	14	$4^{\prime}-6^{\prime \prime}$	14	$4^{\prime}-8^{\prime \prime}$
FA550	1	4'-7"	1	$4^{\prime}-10^{\prime \prime}$
FA551	1	$4^{\prime}-7{ }^{\prime \prime}$	1	$4^{\prime}-10^{\prime \prime}$
FA600	10	$2^{\prime}-8{ }^{\prime \prime}$	10	$2^{\prime}-8{ }^{\prime \prime}$
FA650	As req'd	$4^{\prime}-10^{\prime \prime}$	As req'd	$4^{\prime}-1 / 1 /$
FA651	--	--	1	$6^{\prime}-6^{\prime \prime}$
FA652	--	--	2	$6^{\prime}-11{ }^{\prime \prime}$
FA653	--	--	4	3'-I/"

(X) denotes cantilevered end dimension

PERMANENT CONCRETE BARRIER

BARRIER TYPE IIIB REINFORCING STEEL				
Mark	With Normal End		With Cantilevered End	
	Quantity	Length	Quantity	Length
FB600	10	$2^{\prime \prime} 10^{\prime \prime}$	10	$2^{\prime}-10^{\prime \prime}$
FB601	2	$5^{\prime}-5^{\prime \prime}$	2	$4^{\prime}-9^{\prime \prime}$
FB650	As req'd	$6^{\prime}-7^{\prime \prime}$	As req'd	6'-7"
FB651	--	--	1	$7^{\prime}-0^{\prime \prime}$
FB652	--	--	2	$6^{\prime}-3^{\prime \prime}$
FB653	--	--	4	$4^{\prime}-1 / 1$
FB700	As req'd	60'-0' max.	As req'd	60'-0' $\mathrm{max}^{\text {a }}$
FB701	16	$5^{\prime}-4^{\prime \prime}$	16	$4^{\prime}-8{ }^{\prime \prime}$
FB702	--	--	4	$3^{\prime}-4^{\prime \prime}$
FB750	1	$5^{\prime}-5^{\prime \prime}$	1	$4^{\prime}-10^{\prime \prime}$
FB751	1	$5^{\prime}-5^{\prime \prime}$	1	$4^{\prime}-10^{\prime \prime}$
$\begin{aligned} & \bar{\prime} \\ & i \\ & i n \\ & \\ & \hline \end{aligned}$	FB650 5/~	x) denotes con ~ FB652	vered end ~ FB750 -10" (4'-3") ~ FB75/	$\xrightarrow[9 \prime \prime]{-1}$ 653 --

PERMANENT CONCRETE BARRIER

NOTES:

1. All work and materials shall conform to the provisions of Standard Specifications Section 526 - Concrete Barrier.
2. Reinforcing bar designations Type "S" and "CB" refer to type - bending diagrams as shown on the main Reinforcing Steel Schedule. These bars are detailed on the Design Drawings and are included for payment in the Reinforcing Steel pay items.
3. Reinforcing steel shall have a minimum concrete cover of $1 / 2$ inches, except that stirrups Type "S" and "CB" shall have a minimum concrete cover of 2 inches.
4. The first digit following the letters of the mark indicates the size of the reinforcing bar. (FA600 = \#6 bar.) All dimensions are out - to - out of bar.
5. Minimum lap splice lengths are $1^{\prime \prime-9 \prime \prime}$ for FA500 and $2^{\prime \prime}-7^{\prime \prime}$ for FB700.
6. The quantities of reinforcing bars shown are for one barrier end only.
7. Bolt holes in concrete shall be formed by a method approved by the Resident.
8. Payment for anchor bolts and bearing plates will be considered incidental to the concrete barrier pay item. Class 8.8.3 bolts shall be used when corrosion - resistant steel guardrail is specified on the approach roadway.
9. Permanent Concrete Barrier is designed for attachment of Bridge Transition Type "l" unless otherwise indicated on the Design Drowings. Refer to Section 606 for details.
10. After installation of the guardrail is complete, upset the threads on the anchor bolts in 3 places around each bolt, at the junction of the nut and the exposed thread, with a center punch or similar tool.
II. If there is a conflict between these Standard Details and the Design Drowings, the requirements of the Design Drawings shall be followed.

MATERIALS:

Concrete

~ CONCRETE TRANSITION BARRIER ~ (4 - Bar Traffic / Pedestrian Railing)

CONCRETE TRANSITION BARRIER

[^0]

CONCRETE TRANSITION BARRIER

CONCRETE TRANSITION BARRIER
CONCRETE TRANSITION BARRIER

~ SECTION THRU RECESS ~
(3 - Bor Traffic / Bicycle Railing)

CONCRETE TRANSITION BARRIER

CONCRETE TRANSITION BARRIER 526(30)

CONCRETE TRANSITION BARRIER

[^1]

[^2]（ㄱㅋヨ 乙）0099」～ャ
CONCRETE TRANSITION BARRIER

[^3]

[^4]| REINFORCING STEEL SCHEDULE | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 2 - Bar Traffic | | 3 - Bar Bike | | 4 - Bar Bike | | 4 - Bar Ped. | |
| | Qty. | Length | Qty. | Length | Qty. | Length | Qty. | Length |
| TB500 | 10 | $4^{\prime}-6^{\prime \prime}$ | 10 | $4^{\prime}-6^{\prime \prime}$ | 12 | $4^{\prime}-6^{\prime \prime}$ | 12 | $4^{\prime}-6^{\prime \prime}$ |
| TB501 | 2 | $1{ }^{\prime}-8{ }^{\prime \prime}$ | 2 | $2^{\prime}-2^{\prime \prime}$ | 2 | $3^{\prime}-2^{\prime \prime}$ | 2 | $2^{\prime}-1 / 1{ }^{\prime \prime}$ |
| TB502 | 2 | $1 \times-7{ }^{\prime \prime}$ | 2 | $2^{\prime}-0^{\prime \prime}$ | 2 | $2^{\prime}-10^{\prime \prime}$ | 2 | $2^{\prime}-9^{\prime \prime}$ |
| TB503 | 2 | $1{ }^{\prime}-7{ }^{\prime \prime}$ | 2 | $1^{\prime}-10^{\prime \prime}$ | 2 | $2^{\prime}-6{ }^{\prime \prime}$ | 2 | $2^{\prime}-7^{\prime \prime}$ |
| TB504 | 2 | $1^{\prime}-6^{\prime \prime}$ | 2 | 1 '-8" | 2 | $2^{\prime}-2^{\prime \prime}$ | 2 | $2^{\prime}-5^{\prime \prime}$ |
| TB505 | 2 | $1 '-6 "$ | 2 | $1^{\prime}-6^{\prime \prime}$ | 2 | $1{ }^{\prime}-10^{\prime \prime}$ | 2 | $2^{\prime}-3^{\prime \prime}$ |
| TB506 | -- | -- | 2 | $4^{\prime}-8^{\prime \prime}$ | 2 | 5'-1" | 2 | $4^{\prime}-8^{\prime \prime}$ |
| TB550 | 5 | $10^{\prime}-2^{\prime \prime}$ | 6 | $10^{\prime}-2^{\prime \prime}$ | 7 | $10^{\prime}-2^{\prime \prime}$ | 7 | $10^{\prime}-2^{\prime \prime}$ |
| TB600 | -- | -- | 4 | $2^{\prime}-7^{\prime \prime}$ | 4 | $3^{\prime}-7{ }^{\prime \prime}$ | 4 | $3^{\prime}-4^{\prime \prime}$ |
| TB650 | -- | -- | 5 | $5^{\prime}-10^{\prime \prime}$ | 5 | $7{ }^{\prime}-10^{\prime \prime}$ | 5 | $7^{\prime}-4^{\prime \prime}$ |
| TB65/ | 2 | 7'-1/" | 2 | $7^{\prime}-1 / 10$ | 2 | $7{ }^{\prime}-111$ | 2 | $7^{\prime}-1 / 1 /$ |
| TB652 | 5 | $8^{\prime}-9^{\prime \prime}$ |

Notes:
The first digit following the letters of the mark indicate the size of the reinforcing bar. (TB500 = bar size \#5.) All dimensions are out - to out of bar.

Quantities given are for one Transition Barrier.

CONCRETE TRANSITION BARRIER

NOTES:

1. All work and materials shall conform to the provisions of Standard Specifications Section 526 - Concrete Barrier.
2. The Contractor is responsible for ensuring that vertical reinforcing bars TB65I and TB652 are installed prior to placement of the curb or sidewalk concrete. Payment for these bars will be considered incicdental to Item No. 526.34, Permanent Concrete Transition Barrier.
3. Reinforcing steel shall have a minimum concrete cover of 2 inches.
4. Quantities of reinforcing bars shown are for one transition barrier only.
5. When the Concrete Transition Barrier is cantilevered over an expansion joint, the nose shall be blocked out as shown.
6. Payment for guardrail anchorage will be considered incidental to the transition barrier pay item. Class 8.8.3 bolts shall be used when corrosion resistant steel guardrail is specified on the approach roadway
7. Precast Concrete Transition Curb shall meet the requirements of Standard Specifications Section 609 - Curb. The bridge end of the curb shall be saw cut in the field to fit flush against the backwall, as dictated by the bridge skew angle and the profile grade. Where curbing is specified on the adjacent highway, the transition shall be modified accordingly. Payment for transition curb will be considered incidental to the Concrete Transition Barrier pay item.
8. Concrete Transition Barrier is designed for attachment of Bridge Transition Type "l" unless otherwise indicated on the Design Drowings. Refer to Section 606 for details.
9. After installation of the guardrail is complete, upset the threads on the anchor bolts in three (3) places around each bolt, at the junction of the nut and the exposed thread, with a center punch or similar tool.
10. If there is a conflict between these Standard Details and the Design Drowings, the requirements of the Design Drawings shall be followed.

MATERIALS:
Concrete

~ RAIL ELEVATION ~
(Traffic Rail shown; Sidewalk Rail similar)

TEXAS CLASSIC RAIL

Dim. " A " $=6$ " min., 15 " max.

~ TRAFFIC RAIL END ELEVATION ~ (Cantilevered)

TEXAS CLASSIC RAIL

Dim. " A " $=6$ " min.. 15 " max.

~ SIDEWALK $\underset{\text { (Cantilevered) }}{\text { RAIL END }}$ ELEVATION ~

TEXAS CLASSIC RAIL

~ CONTRACTION JOINT ELEVATION ~ (Sidewalk Rail shown)

Dim. "A" $=6$ " min., 15 " max.

Expansion Joint
~ EXPANSION JOINT ELEVATION ~ (Sidewalk Rail shown)

TEXAS CLASSIC RAIL 526(42)

For Wearing Surface ("T") details, refer to Section 502 - Concrete Curb

TABLE OF DIMENSIONS Λ		
Wearing Surface Type	"T"	$" O^{\prime \prime}$
Bituminous	$3 / / 4 "$	$I^{\prime}-O^{\prime} / 4 "$
Unreinforced Concrete	$2^{\prime \prime}$	$I / "$
Integral	$O^{\prime \prime}$	$9^{\prime \prime}$

TEXAS CLASSIC RAIL

For Wearing Surface ("T") details, refer to Section 502 - Concrete Curb

TEXAS CLASSIC RAIL

For Wearing Surface ("T") details, refer to Section 502 - Concrete Curb

TEXAS CLASSIC RAIL

For Wearing Surface ("T") details, refer to Section 502 - Concrete Curb

TEXAS CLASSIC RAIL

~ CR750 ~

TRAFFIC RAIL REINFORCING STEEL SCHEDULE					
Horizontal			Vertical		
Mark	Length	Location	Mark	Length	Location
CR500	30^{\prime} max.	Rail Bot。\& Curb	CR502	$2^{\prime}-2^{\prime \prime}$	Nose
CR50I	$5^{\prime}-3^{\prime \prime}$	Nose/Post	CR503	$2^{\prime}-O^{\prime \prime}$	Nose
			CR504	$I^{\prime}-O^{\prime \prime}$	Nose
CR700	30^{\prime} max.	Rail Top	CR505	$I^{\prime}-8^{\prime \prime}$	Nose
CR750	$5^{\prime}-4^{\prime \prime}$	Nose	CR506	$I^{\prime}-6^{\prime \prime}$	Nose
			CR550	$3^{\prime}-9^{\prime \prime}$	Rail \& Post
			$C R 55 /$	$7^{\prime}-l^{\prime \prime}$	Rail \& Post

TEXAS CLASSIC RAIL

TEXAS CLASSIC RAIL

TEXAS CLASSIC RAIL

TEXAS CLASSIC RAIL

TEXAS CLASSIC RAIL

~ CR750 ~

TRAFFIC RAIL REINFORCING STEEL SCHEDULE					
Horizontal			Vertical		
Mark	Length	Location	Mark	Length	Location
CR500	30^{\prime} max.	Rail Bot. \& Curb	CR5I2	$2^{\prime}-/ I^{\prime \prime}$	Nose
CR50I	$5^{\prime}-3^{\prime \prime}$	Nose/Post	CR5/3	$2^{\prime}-9^{\prime \prime}$	Nose
			CR5/4	$2^{\prime}-7^{\prime \prime}$	Nose
CR700	30^{\prime} max.	Rail Top	CR5I5	$2^{\prime}-5^{\prime \prime}$	Nose
CR750	$5^{\prime}-4^{\prime \prime}$	Nose	CR5/6	$2^{\prime}-3^{\prime \prime}$	Nose
			CR560	$4^{\prime}-O^{\prime \prime}$	Rail \& Post
			$C R 561$	$8^{\prime}-9^{\prime \prime}$	Rail \& Post

TEXAS CLASSIC RAIL

NOTES:

1. All work and materials shall conform to the provisions of Standard Specifications Section 526 - Concrete Barrier.
2. Vertical surfaces and recesses shall be plumb. Tops and bottoms of window openings may be level or parallel to the grade of the rail.
3. Dim. "A" shall be approximately equal at all locations in any length of railing.
4. Contraction joints shall be located over piers on continuous structures and at $30-f t \pm i n t e r v a l s ~ a l o n g ~ t h e ~ l e n g t h ~ o f ~ a l l ~ b r i d g e s . ~ D o ~ n o t ~ e x t e n d ~ r e i n f o r c i n g ~$ steel through the contraction joints.
5. Reinforcing steel shall have a minimum concrete cover of 2 inches.
6. The first digit following the letters of the bar mark indicates the size of the reinforcing bar. (CR500 = \#5 bar.) All dimensions are out - to - out of bar.
7. Minimum lap splice lengths are $l^{\prime}-9^{\prime \prime}$ for CR500 and $3^{\prime}-0^{\prime \prime}$ for CR700.
8. When the end post is cantilevered over an expansion joint, provide a block - out as shown.
9. For details of curb / sidewalk expansion dams where necessary, refer to the Standard Detail for the appropriate Expansion Device.
10. Bolt holes in concrete shall be formed by a method approved by the Resident.
II. Payment for anchor bolts and bearing plates will be considered incidental to the Texas Classic Rail pay item.
11. For details of the Concrete Transition Curb, refer to Standard Details Section 609. Precast Concrete Transition Curb. Payment for the transition curb will be considered incidental to the Texas Classic Rail pay item.
12. If there is a conflict between these Standard Details and the Design Drowings, the requirements of the Design Drowings shall be followed.

MATERIALS:
Concrete

TEXAS CLASSIC RAIL

~ SHEAR KEY DIMENSIONS ~
(Typical for all precast slabs and box beams)

PRECAST SUPERSTRUCTURE

PRECAST SUPERSTRUCTURE

Sealant (See Note No. 8 \& 9) \square Non - shrink grout

(For precast slabs and box beams where " D " ≤ 24 ")

Sealant (See Note No. 8 \& 9) $\quad \square$ Non - shrink grout

~ SHEAR KEY DETAIL ~
(For precast box beams where " D " ≥ 27 ")

PRECAST SUPERSTRUCTURE

-- POST - TENSIONING BLOCK - OUT DETAIL --

* Anchoring Material = Fixed

 Sealant = Expansion

PRECAST SLABS						
$\begin{aligned} & \hline \text { Slab } \\ & \text { Type } \end{aligned}$	Nom. Width	$\begin{aligned} & \hline \text { Depth } \\ & { }^{\prime} D^{\prime \prime} \end{aligned}$	Void $" \phi, "$	Void " ϕ_{2} "	$\begin{gathered} \text { Spacing } \\ " x, " \text {, } \end{gathered}$	Spacing " X_{2} "
S36-12	36"	$12^{\prime \prime}$	--	--	--	--
S36-15	36"	$15^{\prime \prime}$	$8^{\prime \prime}$	--	$10^{\prime \prime}$	151/2"
S36-18	36"	$18^{\prime \prime}$	$10^{\prime \prime}$	--	$10^{\prime \prime}$	151/2"
536-21	$36^{\prime \prime}$	21"	$12^{\prime \prime}$	--	$10^{\prime \prime}$	151/2"
548-12	$48^{\prime \prime}$	$12^{\prime \prime}$	--	--	--	--
S48-15	$48^{\prime \prime}$	$15^{\prime \prime}$	$8^{\prime \prime}$	$8^{\prime \prime}$	$10^{\prime \prime}$	$133 / 4 "$
548-18	$48^{\prime \prime}$	$18^{\prime \prime}$	$10^{\prime \prime}$	$10^{\prime \prime}$	91/2"	$14^{\prime} / 4^{\prime \prime}$
548-21	$48^{\prime \prime}$	2/"	$12^{\prime \prime}$	$10^{\prime \prime}$	91/2"	$14^{\prime} / 4^{\prime \prime}$

PRECAST BOX BEAMS					
Box Type	Nomo Width	Depth "D"	Box Type	Nom。 Width	Depth "D"
$B 36-24$	$36^{\prime \prime}$	$24^{\prime \prime}$	$B 48-24$	$48^{\prime \prime}$	$24^{\prime \prime}$
$B 36-27$	$36^{\prime \prime}$	$27^{\prime \prime}$	$B 48-27$	$48^{\prime \prime}$	$27^{\prime \prime}$
$B 36-30$	$36^{\prime \prime}$	$30^{\prime \prime}$	$B 48-30$	$48^{\prime \prime}$	$30^{\prime \prime}$
B36-33	$36^{\prime \prime}$	$33^{\prime \prime}$	$B 48-33$	$48^{\prime \prime}$	$33^{\prime \prime}$
$B 36-36$	$36^{\prime \prime}$	$36^{\prime \prime}$	$B 48-36$	$48^{\prime \prime}$	$36^{\prime \prime}$
$B 36-39$	$36^{\prime \prime}$	$39^{\prime \prime}$	$B 48-39$	$48^{\prime \prime}$	$39^{\prime \prime}$
$B 36-42$	$36^{\prime \prime}$	$42^{\prime \prime}$	$B 48-42$	$48^{\prime \prime}$	$42^{\prime \prime}$
$B 36-45$	$36^{\prime \prime}$	$45^{\prime \prime}$	$B 48-45$	$48^{\prime \prime}$	$45^{\prime \prime}$
$B 36-48$	$36^{\prime \prime}$	$48^{\prime \prime}$	$B 48-48$	$48^{\prime \prime}$	$48^{\prime \prime}$

PRECAST SUPERSTRUCTURE

PRECAST SUPERSTRUCTURE

PRECAST SUPERSTRUCTURE

Set "A" stirrups (See Note No. 3)

~ TYPICAL SECTION ~
(36" Wide Precast Box Beam)

+ Straight Strands
- Draped Strands

PRECAST SUPERSTRUCTURE

Set "A" stirrups (See Note No. 3)

PRECAST SUPERSTRUCTURE

PRECAST SUPERSTRUCTURE

\#4 U - bar (fascio side only

~ SHEAR REINFORCING ~
(For use with reinforced C.I.P. slab)

> * IO" for SI2 slabs I2" for SI5 slabs

PRECAST SUPERSTRUCTURE

NOTES:

1. Prestressing strands shown in the various details are schematic in nature and do not represent any specific design requirements.
2. Reinforcing steel shown is the required minimum. Individual designs may vary. Bending details and hooks shall conform to the recommendations of the current revision of ACI Standards 315 and 318 .
3. For box beams, unless the design drawings specify a separate reinforced concrete slab to be constructed over the box beams, additional upper \#4 stirrups shall be provided such that the maximim spacing of the upper stirrups over the voided areas is 12 inches.
4. All plates in the post-tensioning block - out detail shall be galvanized in accordance with ASTM A 123.
5. Concrete around lifting devices shall be recessed a minimum of one inch below the surface. The recess shall be patched with an approved grout after removal of the lifting device.
6. For bridge skew angles up to 15°, the neoprene pad at the bearing area shall cover the entire bridge seat. Seams perpendicular to the centerline of bearing will be allowed provided that the seam occurs near the center of a precast unit with the unit bearing approximately equally on both pad pieces. For bridge skew angles greater than 15°, other bearing area treatment may be shown on the design drawings.
7. The Contractor will be responsible for providing a joint filler system adequate to contain the keyway grout during placement. No extra payment will be made for such system or for necessary repairs or other extra work if the joint filler system fails.
8. The shear key sealant shall be one of the polyurethane - based products listed on the MaineDOT Qualified Products List of Pour - In - Place Joint sealant.
9. When a high - performance waterproofing membrane is to be applied directly to the top of the precast units, eliminate the shear key sealant and fill the shear key to the top of the unit with non - shrink grout.
10. If there is a conflict between these Standard Details and the Design Drowings, the requirements of the Design Drowings shall be followed.

DIVISION 600

MISCELLANEOUS CONSTRUCTION

CONCRETE BOX CULVERT EXTENSION USING corrugated metal pipe \& PIPE ARCHES

INLETS

CONCRETE INLET ENDWALL

TABLE A

CORRUGATED PIPES		
PIPE I.D.	$\begin{gathered} \text { NO. OF BOLTS } \\ \text { REQUIRED } \\ \hline \end{gathered}$	" " $^{\prime}$ DIMENSION
$60^{\prime \prime}$	4	$1{ }^{\prime \prime}-6{ }^{\prime \prime}$
66"	4	$1{ }^{\prime}-6{ }^{\prime \prime}$
$72^{\prime \prime}$	4	1 '-6"
$78{ }^{\prime \prime}$	5	1 '-6"
84"	5	$1 '-6 "$
STRUCTURAL PLATE PIPE		
PIPE I.D.	$\begin{gathered} \text { NO. OF BOLTS } \\ \text { REQUIRED } \\ \hline \end{gathered}$	"X" DIMENSION
$72^{\prime \prime}$	4	$1 '-6 "$
$78{ }^{\prime \prime}$	5	$1-71 / 2^{\prime \prime}$
84"	5	1 -9"
$90^{\prime \prime}$	5	$1 \mathrm{C}-10^{\prime} / 2$
$96^{\prime \prime}$	6	$2^{\prime}-0^{\prime \prime}$
102"	6	$2^{\prime}-1 / 2^{\prime \prime}$
108"	6	$2^{\prime}-3^{\prime \prime}$
$114{ }^{\prime \prime}$	7	$2^{\prime}-4 / 12{ }^{\prime \prime}$
$120{ }^{\prime \prime}$	7	$2^{\prime}-6{ }^{\prime \prime}$
126"	7	$2^{\prime}-71 / 2^{\prime \prime}$
132 "	8	$2^{\prime}-9^{\prime \prime}$
$138{ }^{\prime \prime}$	8	$2^{\prime}-10^{\prime \prime} 2^{\prime \prime}$
$144 "$	9	$3^{\prime}-\mathrm{O}^{\prime \prime}$
$150^{\prime \prime}$	9	$3-1 / 2{ }^{\prime \prime}$
156"	9	3-3"
162"	10	3'-41/2"
$168{ }^{\prime \prime}$	10	$3^{\prime}-6^{\prime \prime}$
$174{ }^{\prime \prime}$	10	3'-71/2"
$180^{\prime \prime}$	$1 /$	$3^{\prime}-9^{\prime \prime}$

NOTES:

1. Culverts installed under 2:l slopes shall have Riprap laid on 2:I slope with no ditch transitions.
2. Excavation required to grade culvert inlets and outlets as shown will not be paid separately, but will be incidental to the culvert.
3. Anchor bolts will be incidental to the concrete items.
4. Concrete endwall shall be structural concrete class "A" and shall be paid for as Item 502.32 or Item 502.329, Structural Concrete Culvert Endwall. Reinforcing steel will not be paid for separately but will be considered incidental to Item 502.32 or Item 502.329.
5. Standard galvanized carriage or machine bolts $1 / 2^{\prime \prime} \times 1^{\prime}$ long or $3 / 4^{\prime \prime} \times 2^{\prime}$ long with minimum $21 / 2 " t h r e a d ~ m a y ~ b e ~ f u r n i s h e d ~ i n ~ p l a c e ~ o f ~ a n c h o r ~ b o l t s . ~$ Washers shall be furnished at the head of each bolt.
6. Bolt material shall conform to ASTM F568 Class 4.6. Nuts shall conform to ASTM A563M. Bolts, nuts, and washers shall be hot dip galvanized after fabrication to meet ASTM A/53.

CONCRETE INLET ENDWALLS FOR RIVETED AND STRUCTURAL PLATE PIPES 60"TO 180"IN 2:I SLOPES

- Normal Ditch or Toe of Slope
~ ISOMETRIC VIEW ~

~ SECTION A-A ~

CONCRETE INLET ENDWALLS FOR RIVETED AND STRUCTURAL PLATE PIPES 603(06) ${ }^{\prime \prime}$ TO $180^{\prime \prime}$ IN 4:I SLOPES

CIRCULAR CULVERT PIPE (NOMINAL WALL THICKNESS IN INCHES EXCEPT M294 PIPE)											
$\begin{aligned} & \text { c- } \\ & \stackrel{W}{N} \\ & \frac{W}{x} \\ & \frac{1}{a} \end{aligned}$	CORRUGATED METAL PIPE				SPIRAL RIB (TYPE IR) (B)		PLASTIC PIPE		REINFORCED CONCRETE PIPE		
	OPTION I		OPTION I/III		OPTION I	OPTION I/III	OPTION I / III	OPTION III	OPTION I/III		
	M218	$\begin{gathered} M 274 \\ \text { (A) } \end{gathered}$	M246	M197	$\begin{gathered} M 274 \\ \text { (A) } \end{gathered}$	M197	M294 DUAL-WALL PIPE STIFFNESS KPa @5\% DEFL.	$\begin{gathered} \text { M278 PIPE } \\ \text { STIFFNESS } \\ \text { KPa } \end{gathered}$	$\begin{gathered} \text { MI7O } \\ \text { CLASS III } \\ \text { WALL A } \end{gathered}$	$\begin{gathered} \text { MI7O } \\ \text { CLASS III } \\ \text { WALL B } \end{gathered}$	$\begin{gathered} \text { MITO } \\ \text { CLASS III } \\ \text { WALL C } \end{gathered}$
12 "	0.079	0.064	0.064	0.075			345	320	$13 / 4$	2	$23 / 4$
$15^{\prime \prime}$	0.079	0.064	0.064	0.075			290	320	17/8	$21 / 4$	3
$18^{\prime \prime}$	0.109	0.079	0.079	0.075	0.079	0.106	275		2	21/2	31/4
2/"	0.109	0.079	0.079	0.075	0.079	0.106	260		21/4	$23 / 4$	31/2
$24^{\prime \prime}$	0.109	0.079	0.079	0.075	0.079	0.106	235		21/2	3	$33 / 4$
$27^{\prime \prime}$	0.109	0.079	0.079	0.105			205		25/8	31/4	4
30"	0.109	0.079	0.079	0.105	0.110	0.134	195		$23 / 4$	31/2	4/4
33"	0.109	0.079	0.079	0.105					2/8	$33 / 4$	4/1/2
36"	0.109	0.079	0.079		0.110	0.134	150		3	4	$43 / 4$
36" (1)			0.079	0.075							
42"	0.138	0.109	0.109				140		31/2	4/2	$51 / 4$
$42^{\prime \prime}$ (1)			0.079	0.105	0.110						
$48^{\prime \prime}$	0.138	0.109	0.109				125		4	5	53/4
$48^{\prime \prime}$ (1)			0.079	0.105	0.110						
54"	0.168	0.138	0.138				110		4/22	51/2	61/4
$54^{\prime \prime}$ (1)			0.079	0.105	0.110						
60"	0.168	0.138	0.138				95		5	6	63/4
60"(1)			0.079	0.105	0.110						
$66^{\prime \prime}$ (1)			0.079	0.135					51/2	61/2	71/4
$72^{\prime \prime}$ (1)			0.109	0.135					6	7	$73 / 4$
78" (1)			0.109	0.164						71/2	81/4
84" (1)			0.109	0.164						8	$83 / 4$

which requires 3" x l"Corrugations for Aluminum Pipes and 3"x l" or 5" x l"Corrugations for Steel Pipes. Option I Pipes Fill heights over 15^{\prime} may require larger metal gages. M197 = Corrugated Aluminum Alloy Pipe M278 = Polyvinyl Chloride Pipe PVC MI7O = Reinforced Concrete Pipe M294 = High Density Polyethylene Pipe (A) Option I, M274 can be used for closed drainage Option III Pipe
(B) Spiral Rib Type IR can be used for Smoothlined Pipe

Anchors shall be installed as shown on figure above at 60° down from Top Dead Center (TDC) to the nearest inch measured from the outside. For pipe diameters not listed below, divide the $O D$ by 6 .

Holes for anchors shall be drilled larger than the anchor bolt diameter specified in the table below to allow for anchoring materials.

ANCHOR	
$18^{\prime \prime} \phi$ Pipes	60° from TDC $=12^{\prime \prime}$
$24^{\prime \prime} \phi$ Pipes	60° from TDC $=15^{\prime \prime}$
$30^{\prime \prime} \phi$ Pipes	60° from TDC $=19^{\prime \prime}$
$36^{\prime \prime} \phi$ Pipes	60° from TDC $=22^{\prime \prime}$

NOTES:

1. For new concrete pipe or pipe designated to be removed and reset, ties shall be used at all pipe inlets and outlets as specified in the construction notes.
2. Ties shall be used only to hold pipe sections laterally together, not for pulling the pipe section together.
3. Tie rods and connections shall be placed on the outside of all pipe sections unless otherwise directed.
4. Tie rod shall be galvanized steel, including all hardware required. Any welded areas shall be treated with an approved galvanized paint. All welding shall meet current MaineDOT Specifications. Steel shall conform to ASTM A 307 or equivalent.

CONCRETE PIPE TIES
 603(10)

Double bolted w/washers as

required

See Table A for required steel bolt O.D. Length of bolt may vary as required to clear pipe bell. Breakout caused by drilling will be patched with an approved material
~ GALVANIZED BOLTED ANCHOR W/GALVANIZED FLATBAR CONNECTION ~

$$
\begin{gathered}
\text { ~ MECHANICAL ANCHOR W/ GALVANIZED PLATE } \\
\text { CORE DRILL HOLES } \sim
\end{gathered}
$$

TABLE A	
PIPE SIZE (I.D.)	BOLT THREAD ϕ
$12^{\prime \prime}-26^{\prime \prime}$ I.D.	$5 / 8^{\prime \prime}$
$27^{\prime \prime}-66^{\prime \prime}$ I.D.	$3 / 4^{\prime \prime}$
$67^{\prime \prime}-132^{\prime \prime}$ I.D.	$1^{\prime \prime}$

Compression/Expansion Type Mechanical Anchor
~ DETAIL B ~

~ MECHANICAL ANCHOR W/GALVANIZED ANGLE PLATE ~ Reference Table B for weld size. Fillet welds must lap area bolt contacts Pipe.

- Extra Strength Steel Pipe Schedule XXH, or (160 Minimum, with approval from Resident) Reference Table B for proper steel pipe I.D.

~ WELDED PIPE TIE ~

TABLE B				
BOLT O.D.	STEEL PIPE I.D.	WELD SIZE	CRT PIPE I.D.	
$5 / 8^{\prime \prime}$	$3 / 4^{\prime \prime}$	$5 / 16^{\prime \prime}$	$12^{\prime \prime}-26^{\prime \prime}$	
$3 / 4^{\prime \prime}$	$1^{\prime \prime}$	$3 / /^{\prime \prime}$	$27^{\prime \prime}-66^{\prime \prime}$	
$/^{\prime \prime}$	$1 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$	$67^{\prime \prime}-132^{\prime \prime}$	

GENERAL NOTES

1. Catch basins in excess of 8^{\prime} in depth shall, if directed, be provided with steps similar to those detailed for manholes.
2. Drain holes in precast sumps shall be less than or equal to $3^{\prime \prime}$ in diameter and shall be plugged with mortar when constructed.
3. All precast sections of less than $8^{\prime \prime}$ wall thickness shall have tongue and groove joints.
4. Cone and ring sections shall have a wall thickness of 4 " minimum to $8^{\prime \prime}$ maximum.
5. Minimum wall thickness at the sump shall be 4 " as specified in AASHTO MI99.
6. The wall around inlet and outlet pipes shall be a pre-cast opening 2 " larger than the outside diameter of the pipe.
7. Lift holes or lift handles shall be provided for installation of Catch Basins and Manholes.
8. Lift holes shall not exceed $3^{\prime \prime}$ in diameter and shall be plugged with mortar when constructed. Lift handles shall not exceed 3 " in diameter and shall be cut off as directed by the Resident Engineer prior to back filling the structure.

Structure	Top				Shape				Grate	
Catch Basin	A	B	D	$A(P) B(P)$	$/$	2	5	6		
Type A										C
Type B										C
Type A Portland										P
Type B Portland										P
Type F										$C *$
Manhole										MHC

*Certain applications may allow for non-cascade grates.

~ TABLE OF CATCH BASIN TYPES ~ (combinations of tops and types)

CATCH BASINS

Dimensions are intended to be nominal

CATCH BASIN OR MANHOLE

Dimensions are intended to be nominal.

CATCH BASIN OR MANHOLE

Flow Direction

This corner left off for "right" grate.
Diagonally opposite corner for "left" grate to fit in keyed frames.

NOTES:
I.To be used where parallel bar grates would present a hazard to bicycle traffic.
2. For use on catch basin types: Al-C, A2-C, A5-C, BI-C, B2-C, B5-C, F3-C, F4-C, F5-C, F6-C.

$$
\text { "CASCADE }-\underset{604(04) A}{-T Y P E " ~ G R A T E S ~}
$$

~ SECTION B-B ~
NOTES:
l.To be used where parallel bar grates would present a hazard to bicycle traffic.
2. For use on catch basin types: Al-C, A2-C, A5-C, BI-C, B2-C, B5-C, F3-C, F4-C, F5-C, F6-C.

$$
\begin{gathered}
\text { "CASCADE - TYPE" GRATES } \\
\text { OR APPROVED EQUAL } \\
604(04) B
\end{gathered}
$$

TYPE "A" \& "B" CATCH BASIN TOPS

NOTES:

1. Manhole frames and covers are to be machined to a smooth fit and shall be of gray cast iron or ductile iron conforming to AASHTO M3O6.
2. Diamond top surface is optional.

Dimensions are intended to be nominal.

CATCH BASIN TYPE "F"

Erosion Control Geotextile
\qquad Riprap Downspout
~ DETAIL I~
TYPE "F" CATCH BASIN
WITH OUTLET PIPE AND RIPRAP

gENERAL NOTES

1. Sewer bricks to conform to ASTM Standard Specification Design \#C 32-63, Grade M.A. or S.A.
2. Casting shall be of uniform quality, free from blowholes, porosity, hard spots, shrinkage, distortion, or other defects. They shall be smooth and well cleaned, trimmed and inspected, and approved asphalt paint. Material to be designated in ASTM Standard Specifications.48-Class 35.
3. All concrete shall be class "A" having a minimum ultimate compressive strength of $4,000 \mathrm{lb} / \mathrm{in}^{2}$ at the end of 28 days unless otherwise noted.
4. Plastic Manhole Steps 12 " O.C. made of Co-Polymer Polypropylene with 3/8 grade 60 steel rebar inside with Ist step 8" below top of cone.
5. Waterproofing - The outside surface of catch basins and manhole cones shall be given 2 coats of waterproofing material in accordance with the instructions of the Manufacturer. Time shall be allowed between coats to permit sufficient drying. This way the application of following coats has no effect on the previous coat(s).
6. Catch basins not in a system that connects into existing City of Portland drainage system may be constructed without flexible plastic gaskets and will have a minimum 3 foot sump.

Standard
Catch Basin Frame \& Cover

Header Brick (both sides under C.E. Stone) $1-5$ Courses $\leq 12^{\prime \prime}$
~ PLAN ~

Variable in 12 " Increments

Construction Alternate " A "

$$
\begin{aligned}
& \text { REINFORCED } \text { CONCRETE CATCH BASIN } \\
& \text { TYPE A-1-P } \\
& 604(13)
\end{aligned}
$$

~ TOP SLAB DETAIL FOR TYPE A-I-P ~
REINFORCED CONCRETE CATCH BASIN TYPE A-I-P TOP $\underset{604(14)}{\operatorname{TOP}}$ SLAB DETAIL

~ TOP SLAB DETAIL FOR TYPE B-I-P ~
REINFORCED CONCRETE CATCH BASIN TYPE B-I-P TOP SLAB DETAIL 604(15)

~ TRAP DETAIL ~

REINFORCED CONCRETE CATCH BASIN TYPE A-I-P

SECTION A-A

~ GRATE DETAIL ~
~ FRAME DETAIL ~ REINFORCED CONCRETE CATCH BASIN TYPE $\underset{604(7)}{B-/-P}$ DETAILS

NOTES:

1) Manhole frames, valve boxes, and covers shall meet ASTM A48

UTILITY STRUCTURE

(Manhole, Valve Box, Vault Cover)

CURBED SHOULDER ~

*Unless otherwise shown on the plans

UNDERDRAIN NOTES

1. The maximum vertical measurement of depth for payment of Structural Rock Excavation will be to a horizontal plane located 12 inches below the bottom of the invert of the pipe for Underdrain Type "B" and Underdrain Type "C".
2. The material for Elbows, Tees, \& Wyes for Underdrain Types " B " and " C " shall be at least as thick as the largest size pipe being connected.
3. The invert elevation of Underdrain Type " B " outlets shall be a minimum of 6 inches above the flow line of a ditch or the original ground.
4. Width of the trench for underdrain outlet will be the same as the underdrain trench.
5. No allowance for payment will be made for excavating or material excavated beyond the horizontal dimensions shown for Types "B" or "C" Underdrain.
6. In "Box Sections" the edge of the trench shall be in line with the edge of box section.

Type "B" and Type "C" Underdrain Pipe									
Underdrain Pipe Nominal Wall Thickness in Inches						Underdrain Stiffness in KPa			
Corrugated				Meta	Pipe	PVC Pipe		Polyethylene Pipe	
Diameter	M 218	$\begin{gathered} M \underset{\&}{274} \end{gathered}$	M 197	$\begin{aligned} & T y p \\ & 3 / 4 \times 3 / 4 \end{aligned}$	$\begin{aligned} & \text { IR } \\ & 71 / 2^{\prime \prime} \end{aligned}$	M 278	ASTM	M 294 SP	M 252 SP
		M 246		M 274	M 197				
Type "B" Underdrain Pipe									
$6 "$	0.064	0.052	0.048			320	340		340
Type "C" Underdrain Pipe									
$12^{\prime \prime}$	0.079	0.064	0.075			320		345	
$15^{\prime \prime}$	0.079	0.064	0.075			320		290	
$18^{\prime \prime}$	0.079	0.064	0.075	0.079	0.106			275	
2/"	0.079	0.064	0.075	0.079	0.106			260	
$24^{\prime \prime}$	0.079	0.064	0.075	0.079	0.106			235	
30"	0.109	0.064	0.105	0.079	0.106			195	
36"	0.109	0.064	0.105	0.079	0.106			150	

[^5]

NOTES:

1. A post shall be provided for each mailbox.
2. Posts shall not be spaced closer than 30"。
3. Posts should not be placed closer than 200 from an intersecting road.
4. When single wood posts exceed $4 / 2^{\prime \prime}$ diameter or square dimension, two $3 / 4$ "holes shall be drilled through the post at 90 degrees to each other, 4 " above the finish grade.

*Hardware may vary depending on particular approved system used.

$$
\text { MULTIPLE } \underset{\text { G06(02) }}{\text { MAILBOX SUPPORT }}
$$

NOTES:

1. Intermediate post spacing shall be $6^{\prime}-3^{\prime \prime}$ unless otherwise shown.
2. Wood posts for Guardrail shall be $6^{\prime \prime}$ nom. ($51 / 2^{\prime \prime}$ min.) $\times 8^{\prime \prime}$ nom. ($71 / 2^{\prime \prime}$ min.) and offset blocks shall be $6^{\prime \prime} \times 8^{\prime \prime}$ nom. ($51 / 2^{\prime \prime} \times 71 / 2^{\prime \prime}$ min.).
3. Steel posts for Guardrail shall be W6x9.0 or W6x8.5.
4. Steel posts punched with holes in addition to those specified to accommodate other types of Guardrail, will be accepted subject to the approval of the Resident.
5. Composite offset blocks may be used as an alternative to wood offset blocks provided that they meet NCHRP 350 requirements and are installed according to manufacturers specifications.
6. Beam type Guardrail set on a radius of 150^{\prime} or less shall be circular Guardrail.
7. Offset blocks shall be installed on all posts.
8. Guardrail Terminal End (RWEO3A) to be used only on trailing end of Guardrail on divided highways. Washers (FWRO3) shall be installed on the last 9 posts.
9. Identification letters and numbers on drawings refer to the standard detail drawings shown in "A guide to Standardized Highway Barrier Hardware" by AASHTO-AGC-ARTBA Joint Committee. chantemaza@hotmail.com
10. Where guardrail with 30 inch height to top of rail will be installed with a connection to bridge transition type "l", a 25 foot transition shall be provided to match the height of the bridge transition as directed by the resident. Work shall be paid for under the appropriate (????????????)

GUARDRAIL 606(03)

~ OFFSET BLOCK DETAIL FOR STEEL POST ~

~ TOP VIEW ~
~ WOOD BLOCK DETAIL FOR WOOD POST ~

~ TOP VIEW~

~ SIDE VIEW ~

All dimensions are in inches and subject to manufacturing tolerances.

$$
\begin{gathered}
\text { REFLECTORIZED BEAM GUARDRAIL } \\
\text { DELINEATOR DETAILS } \\
\text { 606(07) }
\end{gathered}
$$

Pay limits for

~ PLAN VIEW ~

~ SECTION ~
~ NOTES ~

1. Typical barrier location shall be two feet beyond the normal shoulder edge. Restricted locations allow for the barrier to be placed at the normal shoulder edge, subject to Project Manager approval.
2. A minimum of three feet shall be provided between the face of the barrier and the break in a fill embankment. When minimal impacts are an issue, a two foot space may be used, but seven foot guardrail posts are required.

GUARDRAIL 350 FLARED TERMINAL GRADING

BURIED BACKSLOPE GUARDRAIL TERMINAL 606(10)
Burial Point

5/8" $\phi \times 5$ 'long Galvanized
 Standard Rock
 Bolts conforming to

Shale or Rock Cut ASTM F432 Specifications

~ TYPE B (SHALE OR ROCK)TERMINAL INSTALLATION ~

~ GUARDRAIL END SHOE DETAIL ~

NOTES

1. Prior to placing guardrail, a final check of existing conditions will be made by the project resident and any adjustment necessary to ensure the proper functioning of the guardrail for the purpose for which it is intended will be made accordingly.
2. Extra length posts and W beam rub rail required within the pay limit of Item \#606.80 shall be considered incidental.
3. Extra W Beam Rub Rail required outside of the pay limit of Item $\# 606.80$ will be paid with guardrail Item (606.I78 Guardrail Beam).
4. Extra length posts, if needed, outside the pay limit of Item 606.80 shall be incidental to Item 606.23.
5. The flare taper rate of the guardrail may be steepened after crossing the clear zone point to shorten the length of the terminal.
6. Type (A) (soil) cut slopes terminal guardrail shall be that guardrail which

- is to extend a minimum of two 6'-3" spans into the cut slope, from the first post beyond the toe of the cut slope, as detailed herein
- is to terminate a minimum of $I^{\prime}-O^{\prime \prime}$ below the ground elevation of the back slope.

7. In the buried portion of the terminal, posts shall be galvanized steel. Wood posts and blocks may be used for the remainder of the terminal.
8. The Contractor shall so arrange his work sequence to provide that each Type (A) and (B) Terminal End shall be installed concurrently with the placement of each section of beam rail including backfilling and shaping of the disturbed slope.
9. Type (B) (shale or rock) Terminal installation shall consist of anchoring the guardrail against the face of the exposed rock using guardrail end shoes as detailed herein.
10. The final decision as to the type of cut slope terminal installation Type (A) or (B) at each location will be based on the actual materials encountered during construction.

1/. Buried end terminals, both Type (A) and (B), will be paid as Item \#606.80 complete in place.
12. All labor, equipment, and materials necessary for the terminal end installation including but not limited to excavation, backfilling, and slope shaping will be considered incidental to Item \#606.80.
13. Hold the top guardrail element constant with the typical barrier installation:

- When the bottom of the top of guardrail element exceedes $18^{\prime \prime}$ in height, at any point of the slope, go up stream I post and add a bottom rail element under the standard guardrail element.
- When the top of the installation exceeds 45" from the ground, at any point in the installation, then both elements will be sloped down to maintain a maximum height of $45^{\prime \prime}$ in front of the toe of slope.

14. Bend the downstream end of the bottom rail to the backside of the post and bolt to posts. Use 96"long posts, wood (see note 7) or steel, width dimensions as per standard details at location requiring bottom rail element:

- When bolt holes are field drilled, zinc rich paint (cold galvanization) shall be applied to all disturbed surfaces prior to bolt installation.

BURIED IN BACKSLOPE/ATTACHMENT TO LEDGE GUARDRAIL TERMINALS

END FOR TYPE 3 GUARDRAIL
to - post connections at the last seven (7) posts.
3. A minimum of three feet shall be provided between the face of the barrier and the break in
 foot guardrail posts are required.

$$
\sim P L A N \sim
$$

* Use adjacent or available excavation in place of Common Borrow unless otherwise directed by the Resident.

NOTE:
Widened Shoulder for Low Volume Guardrail End, when required, will be paid for under Item No.606.753, complete in place, which price shall be full payment for furnishing, placing, grading and compacting of aggregate subbase. Common borrow, seed, mulch, loam and hot bituminous pavement will be paid for under the applicable pay items.

$$
\begin{aligned}
& \text { SHOULDER WIDENING FOR } \\
& \text { LOW VOLUME GUARDRAIL END } \\
& \text { GOG(15) }
\end{aligned}
$$

-- TYPICAL RAIL SECTION --

-- ANCHOR BOLT DETAIL

$$
\begin{gathered}
\text { GUARDRAIL TYPE } 3 \text { - SINGLE RAIL } \\
\text { BRIDGE MOUNTED } \\
606(17)
\end{gathered}
$$

-- RAIL POST ELEVATION --

-- bASE PLATE PLAN --

NOTES:

1. All work and materials shall conform to the provisions of Section 507 Railings and Section 606 - Guardrail of the Standard Specifications, as applicable.
2. All exposed cut or sheared edges shall be broken and free of burrs.
3. Curb mounted posts shall be set normal to grade unless otherwise shown.
4. Composite / wood offset blocks shall match those of the associated highway guardrail system.
5. Twenty - five percent of the post - to - base welds in a production lot shall be tested by the Magnetic Particle Method. If rejectable discontinuities are found, another twenty - five percent of that production lot shall be tested. If rejectable discontinuities are found in the second twenty - five percent, all post - to - base welds in that lot shall be tested. Acceptance criteria shall be in accordance with the latest editon of the AWS DI.5 Bridge Welding Code.
6. All non - stock parts shall be galvanized after fabrication in accordance with ASTM A 123, except that hardware shall meet the requirements of either ASTM A 153 or ASTM B 695, Class 50, Type I. Parts except hardware shall be blast - cleaned prior to galvanizing in accordance with SSPC - SP6.
7. Anchor bolts shall be set with a template. Nuts securing the post base shall be tightened to a snug fit and given an additional 1/8 turn.
8. Nested guardrail beam and extra posts beyond the pay limits of the Bridge - Mounted Guardrail will be paid for as twice the required length of Guardrail Type 3 - Single Rail.
9. For details of the Concrete Transition Curb, refer to Standard Details Section 609, Curb. Payment for Concrete Transition Curb will be made under Item No. 609.247, Terminal Curb Type 2-7 ft.

MATERIALS:

Guardrail Beam, Composite / Wood Offset Blocks \& Posts \qquad See Standard Specifications Section 710 Base Plate \& Anchor PlateAASHTO M 270M/M 270, Grade 250 (36) ASTM A 709/A 709M, Grade 36 (250) Anchor bolts ... ASTM A 449 or ASTM A 1554. Grade 55 Anchor bolt washers / nuts .-.-.-.-.-.-.-.......... ASTM F 436 / ASTM A 563

GUARDRAIL TYPE 3 - SINGLE RAIL BRIDGE MOUNTED

NOTES:

1. Guardrail posts interfering with a buried structure shall be cut to length in the field and cast into a concrete base as shown. The concrete may be placed directly into a trench excavated in the subbase material. The concrete mix shall be Class "A". Payment will be considered incidental to the guardrail pay items.
2. Only galvanized steel posts are to be used for this application.
3. The guardrail beam shall be doubled at least one space beyond the limits of the cut posts. Any extra beam length shall be installed toward the leading end of the guardrail. Payment will be considered incidental to the guardrail pay items.
4. Payment for any hand work required to place pavement in this area will be considered incidental to the poving items.

~ GUARDRAIL SECTION ~

GUARDRAIL TREATMENT
 OVER BURIED STRUCTURES

$$
\begin{array}{lll}
\text { Bridge Transition Type " } l^{\prime \prime} \\
\text { Thrie Beam } \\
\text { Terminal Connector }
\end{array}
$$

STANDARD BRIDGE TRANSITION - TYPE "I"
NON - STANDARD
BRIDGE TRANSITION - TYPE "2"

TERMINAL CONNECTOR NOTES

1. Nuts, washers, $7 / 8^{" \phi}$ bolts, and Bearing Plate shall be incidental to Item 606.25. Nuts shall conform to A.S.T.M. A563, Grade DH. galvanized in accordance with A.S.T.M. A/53. Bolts shall be heavy hex structural bolt A.S.T.M. A325, Type l or 3. and galvanized in accordance with A.S.T.M. 153 - Nuts shall also be heavy hex.
2. Terminal Connector anchorage shall be installed on the trailing end.
3. After installation of Guardrail is complete, upset threads on anchor bolts in three places around each bolt at the junction of the nut and the exposed thread with a center punch or similar tool.
4. Terminal Connector anchorage shall be paid under Item 606.25.
5. All accessories (posts, bolts. nuts, etc.) shall be as detailed for standard Type 3 Guardrail, except as otherwise detailed.
6. Field drilling for Terminal Connector, blockouts, and all hardware shall be considered incidental to Item 606.25. Terminal Connector.

TERMINAL CONNECTOR PLATE \& NOTES
Hinge line of foreslope using 6'-0" posts

G4 W-Beam Guardrail standard post section or connection to structure

\square MAIN HIGHWAY \longrightarrow
 ~ PLAN ~
 CABLE RELEASING TERMINAL CURVED W BEAM GUARDRAIL SYSTEM

$\begin{aligned} & \text { RADIUS } \\ & \text { FEET } \end{aligned}$	ANGLE	NUMBER OF CRT POSTS	AREA FREE OF FIXED OBJECTS FEET	
$8^{\prime}-0^{\prime \prime}$	$75^{\circ}-105^{\circ}$	5	L	W
			$25^{\prime}-0^{\prime \prime}$	$16^{\prime}-0^{\prime \prime}$
$16^{\prime}-0^{\prime \prime}$	$75^{\circ}-90^{\circ}$	6	$30^{\prime}-0^{\prime \prime}$	$16^{\prime}-O^{\prime \prime}$
	$90^{\circ}-105^{\circ}$	7		
$25^{\prime}-0^{\prime \prime}$	75°	7	$40^{\prime}-0^{\prime \prime}$	$20^{\prime}-0^{\prime \prime}$
	90°	8		
	105°	9		
$30^{\prime}-0^{\prime \prime}$	75°	9	$50^{\prime}-0^{\prime \prime}$	$20^{\prime}-0^{\prime \prime}$
	90°	11		
	105°	12		

~ ELEVATION ~

NOTES:

1. Dimensional tolerances not shown or implied are intended to be those consistent with the proper functioning of the part, including its appearance, and accepted manufacturing practices.
2. The use of terminal section, Type CRT, is limited to driveways, road approaches and low speed minor road connections. Do not use on mainline roadways.
3. Do not bolt post to W beam for $8^{\prime}-0^{\prime \prime}$ radius only.

$$
\begin{array}{rc}
\text { CABLE } & \text { RELEASING TERMINAL } \\
\text { CURVED } & \text { W } \\
& \text { BEAM GUARDRAIL SYSTEM } \\
\text { GO6(26) }
\end{array}
$$

30" ia. Buffered End Section
$3 / 4^{\prime \prime}$ dig. ($\left.1 / 4^{\prime \prime} \times 3 / 4^{\prime \prime}\right) \times 9^{\prime}$
Cable with one Swaged End

See Detail A
Standard 606(32) rad just to fit).
Terminal Section

Attach W beam to pipe with $5 / 8^{\prime \prime} \times 2^{\prime \prime}$ button head bolt and recess nut, no washer.
Do not connect to post.
~ PLAN ~

~ ELEVATION ~

cable releasing terminal ANCHORAGE ASSEMBLY

cable releasing terminal hardware

NOTE:
Dimensional tolerances not shown or implied are intended to be those consistent with the proper functioning of the part, including its appearance. and accepted manufacturing practices.

cable releasing terminal hardware

NOTES:

1. Reflectorized Flexible Guardrail Markers shall be from Maine DOT's Approved Product List of Guardrail Material.
2. Installation:
a. Each bolt-hole diameter shall be the bolt diameter + $1 / 16^{\prime \prime}$.
b. Wood post attachment - attach marker with 2,5/16" diameter galvanized lag bolts, having $3^{\prime \prime}$ of embedment into the wood post. Use 5/16" flat galvanized steel washers.
c. Steel post attachment - attach marker with 2, 5/16" diameter galvanized hex head bolt, washer and nut assemblies, having $1 / 2^{\prime \prime}$ of bolt extension behind steel post. Washers shall be 5/16" flat galvanized steel.
d. When provided by the marker manufacturer, a stiffening pipe shall be inserted into the base of the marker prior to drilling bolt holes and shall remain in-place.

REFLECTORIZED FLEXIBLE GUARDRAIL MARKER DETAILS

WOVEN WIRE FENCE	NOMINAL SIZE (inches)	SHAPE	$\begin{aligned} & \text { WEIGHT } \\ & \text { (IDS./ft.) } \end{aligned}$	COMMENTS
End, Intermediate, \& Corner Posts	$\begin{gathered} 2^{1 / 2 " \prime} \times 21 / 2^{\prime \prime} \times 1 / 4^{\prime \prime} \\ 2^{\prime \prime \prime} \\ 2^{\prime \prime} \end{gathered}$	$\begin{aligned} & \hline x \\ & \phi \\ & \phi \end{aligned}$	$\begin{aligned} & 9.04 \\ & 8.05 \\ & 6.87 \end{aligned}$	Grade I* w/Top Cap Grade 2* w/Top Cap
Gate Posts	$31 / 2 " \times 31 / 2^{\prime \prime} \times 5 / 16^{\prime \prime}$	$\begin{aligned} & \underline{x} \\ & \phi \\ & \phi \end{aligned}$	$\begin{aligned} & 15.85 \\ & 12.76 \\ & 10.23 \end{aligned}$	Grade I* w/Top Cap Grade 2* w/Top Cap
Line Posts	$\begin{aligned} & ---- \\ & 1 / 4 " \\ & 1 / 4^{\prime \prime} \end{aligned}$	$\begin{aligned} & T \\ & \phi \\ & \phi \end{aligned}$	$\begin{aligned} & 2.93 \\ & 5.00 \\ & 4.05 \end{aligned}$	Studded Grade /* w/Top Cap Grade 2* w/Top Cap
Braces	$\begin{gathered} 13 / 4^{\prime \prime} \times 13 / 4^{\prime \prime} \times 1 / 4^{\prime \prime} \\ 1 / 4^{\prime \prime} \\ 1 / 4^{\prime \prime} \end{gathered}$	$\begin{aligned} & \Varangle \\ & \phi \\ & \phi \end{aligned}$	$\begin{aligned} & 6.11 \\ & 5.00 \\ & 4.05 \end{aligned}$	
CHAIN LINK FENCE	NOMINAL SIZE (inches)	SHAPE	$\begin{aligned} & \text { WEIGHT } \\ & \left(I D S_{0} / f t_{0}\right) \end{aligned}$	COMMENTS
End \& Corner Posts	$\begin{gathered} 2^{\prime \prime} \\ 2^{\prime \prime} \\ 2^{\prime \prime} I_{0} \\ 2^{\prime \prime} \times 2_{0}^{\prime \prime} \times 2^{\prime \prime} \\ 3^{\prime} / 2^{\prime \prime} \times \quad 3^{\prime \prime} / 2^{\prime \prime} \end{gathered}$	$\begin{aligned} & \hline \phi \\ & \phi \\ & H \\ & \Varangle \end{aligned}$	$\begin{aligned} & 8.05 \\ & 6.87 \\ & 9.04 \\ & 11.33 \end{aligned}$	Grade 1* Grade 2* Integral Loops
Line Posts	$\begin{gathered} 1 / 2^{\prime \prime} \text { I.D. } \\ 1 / 2^{\prime \prime} I . I_{0} \\ 17 / 8^{\prime \prime} \times 15 / 8^{\prime \prime \prime} \\ 1 / 8^{\prime \prime} \times 1 / 8^{\prime \prime} \\ \hline \end{gathered}$	$\begin{aligned} & \phi \\ & \phi \\ & H \\ & C \end{aligned}$	$\begin{aligned} & 6.00 \\ & 5.03 \\ & 5.95 \\ & 5.03 \end{aligned}$	Grade $/ \times$ Grade 2*
Top \& Brace Rails	$\begin{aligned} & 1 / 4 " 4^{\prime \prime} . D_{0} \\ & 1 / 4^{\prime \prime} I . D_{0} \\ & 15 / 8^{\prime \prime} 1 / 4^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \phi \\ & \phi \\ & \square \end{aligned}$	$\begin{aligned} & 5.00 \\ & 4.06 \end{aligned}$	Grade /x Grade 2*

* AASHTO M 181 Par. 29.1

FENCE POST, RAIL, AND BRACE OPTIONS

When angle sections are used, they shall be joined with $5 / 16$ " machine bolts through $7 / 16^{\prime \prime} \phi$ holes
 ~ WOVEN WIRE FENCING - METAL POSTS ~

NOTE:
Metal posts shall be installed for a $16^{\prime}-0^{\prime \prime}$ opening. Barway posts and braces shall conform to the requirements of "Gate Posts" and "Braces" under "Woven Wire Fencing - Metal Posts". Cross Dar supports for barways shall be $13 / 4^{\prime \prime} \times 13 / 4 " \times 1 / 4^{\prime \prime}$ rolled angle section. When round gate posts are used, the length of the cross bar supports shall equal the center-to-center of the posts plus 2 inches and they shall be attached to the barway post with $5 / 16^{\prime \prime} \times 4 / 4 "$ machine bolts. When angle section gate posts are used, the length of the cross bar supports shall be equal to the out-to-out dimensions of the angle sections and shall be attached with $5 / 16^{\prime \prime} \times 1$ " machine bolts. All bracing shall conform to the requirements of "Woven Wire Fencing - Metal Posts". Cross bars shall be as required for "Barways - Wood Posts".
~ BARWAYS - METAL POSTS ~

$$
\sim E N D O R
$$

~ INTERMEDIATE
~ LINE POST ~ BARWAY POST ~ OR CORNER POST ~

NOTES:

1. Staples for wood posts are to be $9 \mathrm{Ga} .1 / 22^{\prime \prime}$ and placed according to the Standard Specifications.
2. All end, corner, barway, and intermediate posts shall be braced as shown.
~ WOVEN WIRE FENCING - WOOD POSTS ~

FENCING

NOTE:
"Barbed Wire - Metal Posts" shall be constructed with the post and wire spacing shown above. Metal posts and braces shall conform to all of the requirements noted and shown for "Woven Wire Fencing - Metal Posts", including concrete bases.

BARBED WIRE FENCING - WOOD POSTS AND BARBED WIRE FENCING - METAL POSTS

used at gates, barways. and terminals

~BRACING - TYPE II ~ used at corners, intermediate points. and changes in vertical alignment
bracing assemblies for woven wire AND BARBED WIRE FENCING

NOTES:

1. Gate posts, braces and anchorages to be as specified under "Woven Wire Fencing - Metal Posts".
2. All gates shall be installed with the top hinge point pointing down.
3. Wire for gates shall conform to A.S.T.M. All6, Class I. Design No. IO47-12-I/.
4. The required fittings for fence and gates shall be steel or malleable iron of an approved standard type.
5. Gates shall be furnished with a standard fork latch and one piece of 3/16" straight link alloy steel chain, 24"long. One end shall be attached to the gate frame and attached to the other end shall be a snap lock or other approved fastening device.

Where the change
in grade between any three
 fence posts exceeds 15%, additional intermediate bracing shall be provided.

DRIVE GATEWAYS (I6 FEET) \& INTERMEDIATE BRACING 607(05)

In Medians and in Clear

~ DRIVE ANCHOR ~ (90' to Fence Line)
 Fences. 5'-O" for all end and Gate posts.

GENERAL NOTES

1. When ledge is encountered, steel posts shall be set and grouted 12 inches deep unless the posts penetrate the ground to the depth indicated on the drowings.
2. When wood posts are used, braces shall be attached to the posts with a minimum of (4) 40 penny nails per attachment.
3. When the word "Standard" is used, it shall be interpreted as if it were followed by the expression "To The Fence Industry".
4. Woven wire and barbed wire fencing shall be attached to wood posts with 9 guage $1 / 22^{\prime \prime}$ galvanized staples.
5. Concrete for post foundations shall be Class B.
6. In well formed holes with vertical walls, forms will be required only at the top 9 inches. Holes which cannot be well formed shall have forms for the full depth of the base.
```
    ~ SPACING OF FENCE POSTS ON CURVES ~
radius of curve at
    FENCE LOCATION
    Over 500 feet—_ lO feet
    Over 200 feet to 500 feet-8 feet
    Over 100 feet to 200 feet-_ - feet
    100 feet and Less - }5\mathrm{ feet
```


NOTES:

1. Pre-drill $/ \mathrm{L}^{\prime \prime}$ " diameter holes for Lag Bolts.
2. Pre-drill II/4" diameter holes $1 / 2^{\prime \prime}$ deep to counter sink Lag Bolts.

NOTE:
Sidewalk shall conform to Standard Specifications Section 608.

~ ELEVATION ~
VIEWS AND DETAILS OF THE DETECTABLE WARNING

NOTE: ALL DETECTABLE WARNING AREAS SHALL START 6-IO FROM
THE FLOW LINE TAF THE CURB. BE 24 IN INEPTH. AND COVER THE
COMPLETE WIDTH OF THE RAMP AREA ONLY.
SECTION A-A COMPACTED A.S.C.G.

3' min. Length
~ CURB TYPE 5 ~

$$
\begin{aligned}
& \text { END VIEW~~ELEVATION~~END VIEWs } \\
& \text { Transition Section "B" } \\
& \text { Curb Type "5" to Vertical Curb Type "l" \& Type "2" } \\
& \text { ~ CURB TRANSITION ~ }
\end{aligned}
$$

CURB
Reflectorized Paint
Gutter Grade (if specified)

$$
\sim \text { TRANSITION ~ }
$$

Curb Mold 2 or 3 shall be used in all situations except for where the curb forms the edge of the sidewalk. Mold I shall be used in conjunction with sidewalks or where there is a potential for sidewalks. Mold 3 shall be used in situations where the design speed exceeds 45 mph. Maximum height of Curb under Guardrail shall not exceed $4^{\prime \prime}$.
~ DETAIL A ~

Normal Edge of Shoulder
Shoulder Povement

* See Typical Sections for Project

$$
\text { VERTICAL } \underset{609(04)}{\text { CURB TYPE } 2}
$$

~ AT CURB INLETS ~
(A) For Parking Lane $=2^{\prime \prime}$ Adjacent to Travel Lane $=O^{\prime \prime}$

* Dimension to be $10^{\prime}-O^{\prime \prime}$ if at bottom of a sag.

~ AT CURB WITHOUT INLET STONES ~
NOTE:
Grates shall be installed on gradient of the gutter and be depressed $2^{\prime \prime}$ below the normal gutter grade unless this depression interferes with traffic.

$$
\begin{gathered}
\text { GUTTER GRADE TRANSITION } \\
\text { AT CATCH BASIN } \\
609(05)
\end{gathered}
$$

~ CONCRETE CURB WITH VERTICAL BRIDGE CURB ~ For Wearing Surface ("T") details, refer to Section 502 ~ Concrete Curb

~ PLAN ~

$$
\underset{609(07)}{\text { CURB }} \text { TYPE }
$$

NOTES:

1. Precast Concrete Transition Curb shall meet the requirements of Standard Specifications Section 609 - Curb.
2. Dimensions shown are designed to accommodate a 9" reveal bridge curb with a battered face. Dimensions shall be adjusted to fit other situations as required.
3. Alternate transition curb sections may be used as approved by the Resident.
4. Unless otherwise indicated, payment will be made under Item No.609.247. Terminal Curb Type 2-7 ft.

~ SECTION ~

Min. Distance in Accordance

~ OPEN WELL ~
Min. Distance in Accordance with Safety Standards

~ CLOSED WELL ~

NOTES:

1. Selected ledge excavation, crushed stone or other porous material shall be used to fill around the old ground area of the tree from the tree well to the perimeter of the branches.
2. A Geotextile to prevent infiltration of fines shall be placed over the rock fill.
3. If drainage away from the tree well is necessary, Underdrain Outlet Pipe shall be used, and will be paid for under Item 605.10 6" Underdrain Outlet.
4. The Tree Wells shall be paid for under Item 6/0.09 Hand Laid Riprap.

NOTES:

1. Geotextile shall be Class I, Non - woven, Erosion Control Geotextile (loosely placed) meeting the requirements of Standard Specification 722.03.
2. Refer to Standard Detail 620(05) for specific details on geotextile placement.
3. Protective aggregate cushion shall be a minimum of 12 inches thick and shall meet the requirements of 703.19, Granular Borrow - Material for Underwater Backfill
4. Use of Plain or Heavy Riprap shall be as shown on the Design Drawings.
STONE SCOUR PIO(02)

Note: Work these details with Standard Detail 6/O(O2)

STONE SCOUR PROTECTION

~ PLAIN RIPRAP APRON ~

* Or as specified on the Design Drowings

~ STONE BLANKET ~
STONE SCOUR PROTECTION 6/0(04)

PLACEMENT OF FIRST LIFT OF COVER MATERIAL TO
~ TENSION GEOTEXTILE ON MODERATE GROUND CONDITIONS ~ (NO MUD WAVE).

~ TYPES OF SEAMS ~

Proper Placement
(seam up)

Direction of Successive Stitch Formation

~ CLASS 4OI TYPE STITCH ~

NOTE:
This type of stitch shall be formed with two threads: one needle thread "A", and one looper thread, "B". loops of thread "A" shall be passed through the material and interlaced and interlooped with loops of thread " B ". The interloopings shall be drawn against the underside of the bottom ply of material.

GEOTEXTILE SEAMING

~ GEOTEXTILE ON OLD GROUND ~

~ BOX SECTION ~

$$
\sim \text { PLAN VIEW ~ }
$$

geotextile placement for protection of SLOPES ADJACENT TO STREAMS \& TIDAL AREAS

Pay Limits for Class I, Non - woven Erosion Control Geotextile (loosely placed) ~ See Standard Specifications 722.03

~ AT STRUCTURE ~
geotextile placement for protection of SLOPES ADJACENT TO STREAMS \& TIDAL AREAS

~ SECTION A-A ~

GEOTEXTILE PLACEMENT SChEME FOR PROTECTION OF DITCHES, SHALLOW CHANNELS,ETC. 620(06)

NOTES:

1. Staking may be required to assure straight trunk. Staking must follow proper industry standards.
2. Remove top l/3 of burlap and wire basket. Existing ball shall be even or slightly above existing grade.

Do not apply mulch
directly against trunk
Build 4" High Minimum Soil Berm for Water Saucer
4" Bark Mulch
Existing
Amended Backfill Mix
with Minimum of I/3
Smendments per
Specifications
Sertilizer Tab Release

$B \& B$ TREE PLANTING DETAIL

No mulch directly against the newly planted shrubs stems or trunk

Remove top ll of Ball Basket \qquad top
Ball

Fertilizer tab/s as per specifications

4" minimum high soil berm for water saucer

4" Bark mulch

Amended back fill mix minimum l/3 amendments per specifications.

NOTES:

1. All plantings shall comply with current Maine Department of Transportation Standard Specifications.
2. Remove and properly dispose of containers, tags, labels, and flagging tape, unless otherwise directed by an Authorized MaineDOT employee.
3. Prune broken and dead branches at time of planting.

Set base of plant stem level to or up to I" above existing ground surface

Create a water retention berm just outside of the planting hole, $4^{\prime \prime}$ high minimum

Existing Ground Surface

1/2"wide Drain Chase sloped to drain. Required with electrical work.

Slope
~ SECTION A-A ~ I" Projection

Fastenings at rebar intersections shall be in accordance with Standard Specification 503.06: reinforcing steel in this foundation is considered to be in a high tensile stress location

FOUNDATIONS FOR TRAFFIC SIGNALS, HIGHWAY SIGNing AND LIGHTING

1/2" Wide drain chase sloped to drain. Required with electrical work.

Main reinforcing \#6 bars

Galvanized steel anchor bolts as required or breakaway anchors as indicated on plans Anchor bolt design is the responsibility of the contractor's engineer
Slope embankment

Fastenings at rebar intersections shall be in accordance with Standard Specification 503.06: reinforcing steel in this foundation is considered to be in a high tensile stress location

FOUNDATIONS FOR TRAFFIC SIGNALS, HIGHWAY SIGNING AND LIGHTING

626(02)

1/2"Wide drain chase sloped to drain. Required with electrical work.

Casing/excovated surface

3" Clear
 I" Projection — ~ SECTION A-A ~

Length $=L(f t)$

an

Spiral rebar (see appropriate 626(04) table, column C for size)

Equally spaced longit bars (see appropriate 626(04) table, column A for qty and column B for size) Galvanized steel anchor bolts as required or
breakaway anchors as bolts as required or
breakaway anchors as indicated on plans Anchor bolt design is the responsibility of the contractor's engineer $\gtrsim \stackrel{\grave{\mathrm{C}}}{ }$ Grading shall be done to the satisfaction of the Resident

Conduit as required
Equally spaced longit bars Spiral rebar

Notes:

1) See tables 626(04) for reinforcing sizes and spacing 2) Fastenings at rebar intersections shall be in accordance with Standard Specification 503.06: reinforcing steel in these foundations is considered to be in a high tensile stress location
~ 30" to 60" DIA. FOUNDATION ~
ITEM NO. 626.33I and 626.332
FOUNDATIONS FOR TRAFFIC SIGNALS, HIGHWAY SIGNING AND LIGHTING

Chart P28-1 - Foundation Length L (ft.) Based on Bending Moment ($\varphi=28 \mathrm{deg}$)

BENDING MOMENT (kip-ft.)	FOUNDATION DIAMETER (inches) X					
10	30	36	42	48	54	60
20	10					
30	10					
40	10					
50	10	10				
60	11	10	10			
70	11	11	10	10		
80	12	11	11	10	10	10
90	12	12	11	11	11	10
100	12	12	11	11	11	
110	13	12	12	11	11	11
120	13	13	12	12	11	11
130	14	13	12	12	12	11
140	14	13	13	12	12	11
150	14	13	13	12	12	12
160	15	14	13	13	12	12
170	15	14	13	13	12	12
180	15	14	14	13	13	12
190	15	15	14	13	13	12
200	16	15	14	14	13	13
	16	15	14	14	13	13

Chart P28-2 - Foundation Length L (ft.) Based on Torsion ($\varphi=\mathbf{2 8} \mathrm{deg}$)

TORSION (kip-ft.)	FOUNDATION DIAMETER (inches) X					
	30	36	42	48	54	60
20	10	10				
30	11	10	10			
40	13	11	10	10		
50	16	13	11	10	10	
60	18	15	12	11	10	10
70	20	16	14	12	11	10
80		17	15	13	11	10
90		19	16	14	12	11
100		20	17	15	13	12
110			18	15	14	12
120			19	16	14	13
130			20	17	15	13
140				18	16	14
150				19	16	15
160					19	17
170				20	18	15
180						19
190						19
200						16

Chart P28-3 - Summary of Reinforcing Steel ($\varphi=28 \mathrm{deg}$) (for Charts P28-1 and P28-2)

Foundation Diameter X (ft)	Moment (kip-feet)	Torsion (kip-feet)	QTY Longit Bars A	$\begin{gathered} \text { Longit } \\ \text { Bar } \\ \text { Size } \\ \text { B } \\ \hline \end{gathered}$	Spiral Bar Size C	Spiral Spacing (0 to 3 ft) D1(in)	Spiral Spacing $(3 \mathrm{ft}$ to $2 \mathrm{~L} / 3 \mathrm{ft}$) D2 in$)$	Spiral Spacing (2L/3 ft to tip) D3 (in)
2.5	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 60$	12	\#8	\#5	4	12	12
3.0	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 90$	15	\#8	\#5	4	12	12
3.5	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 120$	18	\#9	\#5	4	12	12
4.0	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 160$	21	\#9	\#5	4	12	12
4.5	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 200$	24	\#10	\#5	4	12	12
5.0	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 200$	27	\#10	\#5	4	12	12

Notes: Minimum clear cover to the reinforcing shall be 3 inches.
Spiral spacing shall be measured from the top of the foundation.
ITEM NOS. 626.331 AND 626.332 for SOILS WITH $\varphi=28$ deg.

Chart P30-1 - Foundation Length L (ft.) Based on Bending Moment ($\varphi=30 \mathrm{deg}$)

BENDING MOMENT (kip-ft.)	FOUNDATION DIAMETER (inches) X					
10	30	36	42	48	54	60
20						
30						
40						
50						
60	10					
70	11	10				
80	11	11	10		10	11
90	12	11	11	10	11	11
100	13	12	11	11	11	
110	13	12	11	11	11	
120	13	13	12	11	12	11
130	14	13	12	12	12	12
140	14	13	13	12	12	12
150	14	13	13	12	12	
160	14	14	13	13	12	12
170	15	14	13	13	12	12
180	15	14	14	13	13	12
190	15	14	14	13	13	12
200	16	15	14	13	13	13

Chart P30-2 - Foundation Length L (ft.) Based on Torsion ($\varphi=30 \mathrm{deg}$)

TORSION (kip-ft.)	FOUNDATION DIAMETER (inches) \mathbf{X}					
	30	36	42	48	54	60
20						
30	10					
40	11	10				
50	13	11				
60	14	12	10			
70	15	13	11			
80	17	14	12	10		
90	18	15	13	11	10	
100	20	16	13	12	11	
110		17	14	12	11	10
120		18	15	13	12	11
130		19	16	14	12	11
140		20	16	14	13	11
150			17	15	13	12
160			18	15	13	12
170			18	16	14	13
180			20	17	14	13
190			20	17	15	13
200				18	16	14

ITEM NOS. 626.331 AND 626.332 for SOILS WITH $\varphi=30$ deg.

Chart P30-3 - Summary of Reinforcing Steel ($\varphi=30 \mathrm{deg}$) (for Charts P30-1 and P30-2)

Foundation Diameter X (feet)	Moment (kip-feet)	Torsion (kip-feet)	QTY Longit Bars A	Longit Bar Size B	Spiral Bar Size C	Spiral Spacing (0 to 3 ft) D1 (in)	Spiral Spacing (3ft to $2 \mathrm{~L} / 3 \mathrm{ft}$) D2 (in)	Spiral Spacing (2L/3 ft to tip) D3 (in)
2.5	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 60$	12	\#8	\#5	4	12	12
		$60<\mathrm{T} \leq 80$	12	\#8	\#5	4	8	12
		$80<\mathrm{T} \leq 90$	12	\#8	\#5	4	8	8
3.0	$0 \leq M \leq 200$	$0 \leq \mathrm{T} \leq 100$	15	\#8	\#5	4	12	12
		$100<\mathrm{T} \leq 130$	15	\#8	\#5	4	8	12
3.5	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 150$	18	\#9	\#5	4	12	12
		$150<\mathrm{T} \leq 190$	18	\#9	\#5	4	8	12
4.0	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 200$	21	\#9	\#5	4	12	12
4.5	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 200$	24	\#10	\#5	4	12	12
5.0	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 200$	27	\#10	\#5	4	12	12

Notes: Minimum clear cover to the reinforcing shall be 3 inches.
Spiral spacing shall be measured from the top of the foundation.

Chart P32-1 - Foundation Length L (ft.) Based on Bending Moment ($\varphi=32 \mathrm{deg}$)

BENDING MOMENT (kip-ft.)	FOUNDATION DIAMETER (inches) X					
	30	36	42	48	54	60
10						
20						
30						
40						
50	10					
60	11	10				
70	11	11				
80	11	11	10			
90	12	11	11	10		
100	12	12	11	11	10	
110	12	12	11	11	11	10
120	13	12	12	11	11	11
130	13	12	12	11	11	11
140	13	13	12	12	11	11
150	14	13	12	12	12	11
160	14	13	13	12	12	11
170	14	13	13	12	12	12
180	14	14	13	13	12	12
190	15	14	13	13	12	12
200	15	14	13	13	12	12

Chart P32-2 - Foundation Length L (ft.) Based on Torsion ($\varphi=32 \mathrm{deg}$)

| TORSION
 (kip-ft.) | 30 | 36 | 42 | 48 | 54 | 60 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |
| 20 | | | | | | |
| 30 | 10 | | | | | |
| 40 | 11 | | | | | |
| 50 | 12 | 10 | | | | |
| 60 | 13 | 11 | | | | |
| 70 | 14 | 12 | 10 | | | |
| 80 | 15 | 13 | 11 | | | |
| 90 | 16 | 13 | 12 | 10 | | |
| 100 | 17 | 14 | 12 | 11 | | |
| 110 | 19 | 15 | 13 | 11 | | |
| 120 | 20 | 16 | 13 | 12 | 10 | |
| 130 | 20 | 16 | 14 | 12 | 11 | |
| 140 | | 17 | 14 | 13 | 11 | 10 |
| 150 | | 18 | 15 | 13 | 12 | 11 |
| 160 | | 19 | 16 | 13 | 12 | 11 |
| 170 | | 19 | 16 | 14 | 12 | 11 |
| 180 | | 20 | 17 | 14 | 13 | 11 |
| 190 | | | 17 | 15 | 13 | 12 |
| 200 | | | 18 | 15 | 13 | 12 |

Chart P32-3 - Summary of Reinforcing Steel ($\varphi=32$ deg) (for Charts P32-1 and P32-2)

Foundation Diameter X (feet)	Moment (kip-feet)	Torsion (kip-feet)	QTY Longit Bars A	Longit Bar Size B	Spiral Bar Size C	Spiral Spacing (0 to 3 ft) D1 (in)	Spiral Spacing (3 ft to $2 \mathrm{~L} / 3 \mathrm{ft})$ D2 (in)	Spiral Spacing (2L/3 ft to tip) D3 (in)
2.5	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 60$	12	\#8	\#5	4	12	12
		$60<\mathrm{T} \leq 70$	12	\#8	\#5	4	8	12
		$70<\mathrm{T} \leq 90$	12	\#8	\#5	4	8	8
		$90<\mathrm{T} \leq 120$	12	\#8	\#5	4	4	8
		$120<\mathrm{T} \leq 130$	12	\#8	\#5	4	4	4
3.0	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 100$	15	\#8	\#5	4	12	12
		$100<\mathrm{T} \leq 110$	15	\#8	\#5	4	8	12
		$110<\mathrm{T} \leq 150$	15	\#8	\#5	4	8	8
		$150<\mathrm{T} \leq 180$	15	\#8	\#5	4	4	8
3.5	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 150$	18	\#9	\#5	4	12	12
		$150<\mathrm{T} \leq 160$	18	\#9	\#5	4	8	12
		$160<\mathrm{T} \leq 200$	18	\#9	\#5	4	8	8
4.0	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 200$	21	\#9	\#5	4	12	12
4.5	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 200$	24	\#10	\#5	4	12	12
5.0	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 200$	27	\#10	\#5	4	12	12

Notes: Minimum clear cover to the reinforcing shall be 3 inches.
Spiral spacing shall be measured from the top of the foundation.

Chart P34-1 - Foundation Length L (ft.) Based on Bending Moment ($\varphi=34 \mathrm{deg}$)

BENDING MOMENT (kip-ft.)	FOUNDATION DIAMETER (inches) X					
10	30	36	42	48	54	60
20						
30						
40						
50						
60	10					
70	11	11	11			
80	12	11	11	10		
90	12	11	11	11		
100	12	12	11	11	10	
110	12	12	11	11	11	10
120	13	12	12	11	11	11
130	13	12	12	11	11	11
140	13	13	12	12	11	11
150	14	13	12	12	11	11
160	14	13	13	12	12	11
170	14	13	13	12	12	12
180	14	14	13	12	12	12
190	15	14	13	13	12	12
200						

Chart P34-2 - Foundation Length L (ft.) Based on Torsion ($\varphi=34 \mathrm{deg}$)

TORSION (kip-ft.)	FOUNDATION DIAMETER (inches) X					
	30	36	42	48	54	60
20						
30						
40						
50	10					
60	11					
70	12	10				
80	13	11				
90	13	11				
100	15	12	13			
110	16	13	11			
120	17	14	12	10		
130	18	14	12	11		
140	19	16	13	11		
150	20	16	13	12	10	
160		17	14	12	11	
170		17	14	12	11	
180		18	15	13	11	
190		18	15	13	12	10
200					12	11

Chart P34-3 - Summary of Reinforcing Steel ($\varphi=34 \mathrm{deg}$) (for Charts P34-1 and P34-2)

Foundation Diameter X (feet)	Moment (kip-feet)	Torsion (kip-feet)	$\begin{gathered} \hline \text { QTY } \\ \text { Longit } \\ \text { Bars } \\ \text { A } \end{gathered}$	Longit Bar Size B	Spira Bar Size C	Spiral Spacing $(0$ to 3 ft$)$ D1 (in)	Spiral Spacing (3 ft to $2 \mathrm{~L} / 3 \mathrm{ft})$ D2 (in)	Spiral Spacing (2L/3 ft to tip) D3 (in)
2.5	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 60$	12	\#8	\#5	4	12	12
		$60<\mathrm{T} \leq 70$	12	\#8	\#5	4	8	12
		$70<\mathrm{T} \leq 100$	12	\#8	\#5	4	8	8
		$100<\mathrm{T} \leq 110$	12	\#8	\#5	4	4	8
		$110<\mathrm{T} \leq 160$	12	\#8	\#5	4	4	4
3.0	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 100$	15	\#8	\#5	4	12	12
		$100<\mathrm{T} \leq 110$	15	\#8	\#5	4	8	12
		$110<\mathrm{T} \leq 150$	15	\#8	\#5	4	8	8
		$150<\mathrm{T} \leq 180$	15	\#8	\#5	4	4	8
		$180<\mathrm{T} \leq 200$	15	\#8	\#5	4	4	4
3.5	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 150$	18	\#9	\#5	4	12	12
		$150<\mathrm{T} \leq 160$	18	\#9	\#5	4	8	12
		$160<\mathrm{T} \leq 200$	18	\#9	\#5	4	8	8
4.0	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 200$	21	\#9	\#5	4	12	12
4.5	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 200$	24	\#10	\#5	4	12	12
5.0	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 200$	27	\#10	\#5	4	12	12

Notes: Minimum clear cover to the reinforcing shall be 3 inches.
Spiral spacing shall be measured from the top of the foundation.

Chart S400-1 - Foundation Length L (ft.) Based on Bending Moment (Su=400 psf)

BENDING MOMENT (kip-ft.)	FOUNDATION DIAMETER (inches) X					
10	30	36	42	48	54	60
20	10	10				
30	11	11	10	10	10	
40	12	12	11	11	11	10
50	13	12	12	12	11	11
60	14	14	13	13	12	12
70	15	14	14	13	13	13
80	16	15	15	14	14	13
90	17	16	15	15	14	14
100	18	17	16	15	15	14
110	19	18	17	16	15	15
120	20	18	17	16	16	15
130		19	18	17	16	16
140		20	18	17	17	16
150			19	18	17	17
160			20	18	18	17
170					19	18
180				20	19	18
190					19	19
200					20	19
					19	19

Chart S400-2 - Foundation Length L (ft.) Based on Torsion (Su=400 psf)

TORSION (kip-ft.)	FOUNDATION DIAMETER (inches) X					
	30	36	42	48	54	60
20	11	10	10			
30	16	13	11	10		
40		16	13	11	10	10
50		20	16	13	12	11
60			18	15	13	12
70				17	15	13
80				19	17	14
90					18	16
100					20	17
110						18
120						20
130						
140						
150						
160						
170						
180						
190						
200						

Chart S400-3 - Summary of Reinforcing Steel (Su=400 psf) (for Charts S400-1 and S400-2)

Foundation Diameter X (feet)	Moment (kip-feet)	Torsion (kip-feet)	QTY Longit Bars A	Longit Bar Size B	Spiral Bar Size C	Spiral Spacing (0 to 3 ft) D1 (in)	Spiral Spacing (3t to $2 \mathrm{~L} / 3 \mathrm{ft}$) D2 (in)	Spiral Spacing (2L/3 ft to tip) D3 (in)
2.5	$0 \leq \mathrm{M} \leq 110$	$0 \leq \mathrm{T} \leq 20$	12	\#8	\#5	4	12	12
3.0	$0 \leq \mathrm{M} \leq 130$	$0 \leq \mathrm{T} \leq 40$	15	\#8	\#5	4	12	12
3.5	$0 \leq \mathrm{M} \leq 150$	$0 \leq \mathrm{T} \leq 50$	18	\#9	\#5	4	12	12
4.0	$0 \leq \mathrm{M} \leq 170$	$0 \leq \mathrm{T} \leq 70$	21	\#9	\#5	4	12	12
4.5	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 90$	24	\#10	\#5	4	12	12
5.0	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 110$	27	\#10	\#5	4	12	12

Notes: Minimum clear cover to the reinforcing shall be 3 inches.
Spiral spacing shall be measured from the top of the foundation.

Chart S600-1 - Foundation Length L (ft.) Based on Bending Moment (Su=600 psf)

BENDING MOMENT (kip-ft.)	FOUNDATION DIAMETER (inches) X					
10	30	36	42	48	54	60
20	10					
30	10					
40	11	10	10	10		
50	12	11	11	11	10	10
60	12	12	12	11	11	11
70	13	13	12	12	11	11
80	14	13	13	12	12	12
90	15	14	13	13	13	12
100	15	14	14	13	13	13
110	16	15	14	14	13	13
120	17	15	15	14	14	14
130	17	16	15	15	14	14
140	18	17	16	15	14	14
150	19	17	16	16	15	15
160	19	18	17	16	15	15
170	20	18	17	16	16	15
180	20	19	17	17	16	16
190		19	18	17	16	16
200		20	18	17	17	16
		20	19	18	17	17

Chart S600-2 - Foundation Length L (ft.) Based on Torsion (Su=600 psf)

| TORSION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (kip-ft.) |$\quad \stackrel{y y y y y y}{|c|}$ FOUNDATION DIAMETER (inches) X

Chart S600-3 - Summary of Reinforcing Steel (Su=600 psf) (for Charts S600-1 and S600-2)								
Foundation Diameter X (feet)	Moment (kip-feet)	Torsion (kip-feet)	QTY Longit Bars A	Longit Bar Size B	Spiral Bar Size C	Spiral Spacing (0 to 3 ft) D1 (in)	Spiral Spacing (3ft to $2 \mathrm{~L} / 3 \mathrm{ft})$ D2 (in)	Spiral Spacing (2L/3 ft to tip) D3 (in)
2.5	$0 \leq \mathrm{M} \leq 170$	$0 \leq \mathrm{T} \leq 40$	12	\#8	\#5	4	12	12
3.0	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 60$	15	\#8	\#5	4	12	12
3.5	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 80$	18	\#9	\#5	4	12	12
4.0	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 110$	21	\#9	\#5	4	12	12
4.5	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 140$	24	\#10	\#5	4	12	12
5.0	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 170$	27	\#10	\#5	4	12	12

Notes: Minimum clear cover to the reinforcing shall be 3 inches.
Spiral spacing shall be measured from the top of the foundation.

ITEM NOS. 626.331 AND 626.332 for SOILS WITH Su=600 psf

Chart S800-1 - Foundation Length L (ft.) Based on Bending Moment (Su=800 psf)

BENDING MOMENT (kip-ft.)	FOUNDATION DIAMETER (inches) X					
10	30	36	42	48	54	60
20						
30						
40	10					
50	11	10	10		10	
60	12	11	11	10	11	10
70	12	12	11	11	11	
80	13	12	12	11	11	11
90	13	13	12	12	12	11
100	14	13	13	12	12	12
110	14	14	13	13	12	12
120	15	14	13	13	13	12
130	15	14	14	13	13	13
140	16	15	14	14	13	13
150	16	15	15	14	14	13
160	17	16	15	14	14	14
170	17	16	15	15	14	14
180	18	16	16	15	15	14
190	18	17	16	15	15	14
200	19	17	16	16	15	15
	20	18	17	16	15	15

Chart S800-2 - Foundation Length L (ft.) Based on Torsion (Su=800 psf)

TORSION (kip-ft.)	FOUNDATION DIAMETER (inches) X					
	30	36	42	48	54	60
10	10					
20	11	10				
30	13	12	10			
40	16	13	11			
50	18	15	12	10		
60		16	13	11	10	
70		18	15	12	11	10
80		20	16	13	12	11
90			17	14	13	11
100			18	15	13	12
110			20	16	14	13
120				17	15	13
130				18	16	14
140				19	17	14
150				20	17	15
160					18	16
170					19	16
180					20	17
190					20	18
200						18

Chart S800-3 - Summary of Reinforcing Steel (Su=800 psf) (for Charts S800-1 and S800-2)

Foundation Diameter X (feet)	Moment (kip-feet)	Torsion (kip-feet)	QTY Longit Bars A	Longit Bar Size B	Spiral Bar Size C	Spiral Spacing (0 to 3 ft) D1 (in)	SpiralSpacing(3 ft to $2 \mathrm{LL} / 3 \mathrm{ft}$)D2 (in)	SpiralSpacing(2L/3 ft to tip)D3 (in)
2.5	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 50$	12	\#8	\#5	4	12	12
3.0	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 80$	15	\#8	\#5	4	12	12
3.5	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 110$	18	\#9	\#5	4	12	12
4.0	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 150$	21	\#9	\#5	4	12	12
4.5	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 190$	24	\#10	\#5	4	12	12
5.0	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 200$	27	\#10	\#5	4	12	12

Notes: Minimum clear cover to the reinforcing shall be 3 inches.
Spiral spacing shall be measured from the top of the foundation.

ITEM NOS. 626.331 AND 626.332 for SOILS WITH Su=800 psf

Chart S1200-1 - Foundation Length L (ft.) Based on Bending Moment (Su=1,200 psf)

BENDING MOMENT (kip-ft.)	FOUNDATION DIAMETER (inches) X					
10	30	36	42	48	54	60
20						
30						
40						
50						
60	10					
70	11	10	10		10	
80	11	11	11	10	11	
90	12	11	11	11	11	11
100	13	12	11	11	11	
110	13	12	12	11	11	11
120	13	13	12	12	11	12
130	14	13	13	12	12	12
140	14	13	13	12	12	12
150	14	14	13	13	12	12
160	15	14	13	13	13	13
170	15	14	14	13	13	13
180	15	14	14	13	13	13
190	16	15	14	14	13	13
200	16	15	14	14	13	13

Chart S1200-2 - Foundation Length L (ft.) Based on Torsion (Su=1,200 psf)

TORSION (kip-ft.)	FOUNDATION DIAMETER (inches) X					
	30	36	42	48	54	60
10						
20	10					
30	11					
40	12	10				
50	14	11	10			
60	16	13	11			
70	17	14	12	10		
80	19	15	12	11		
90		16	13	11	10	
100		17	14	12	11	
110		18	15	13	11	10
120		20	16	13	12	11
130			17	14	12	11
140			18	15	13	11
150			18	15	13	12
160			19	16	14	12
170			20	17	14	13
180				17	15	13
190				18	15	14
200				19	16	14

Chart S1200-3 - Summary of Reinforcing Steel (Su=1,200 psf) (for Charts S1200-1 and S1200-2)

Foundation Diameter X (feet)	$\begin{aligned} & \text { Moment } \\ & \text { (kip-feet) } \end{aligned}$	Torsion (kip-feet)	QTY Longit Bars A	$\begin{gathered} \text { Longit } \\ \text { Bar } \\ \text { Size } \\ \text { B } \end{gathered}$	Spiral Bar Size C	Spiral Spacing (0 to 3 ft) D1 (in)	Spiral Spacing (3fto $2 \mathrm{~L} / 3 \mathrm{ft}$) D2 (in)	Spiral Spacing (2L/3 ft to tip) D3 (in)
2.5	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 60$	12	\#8	\#5	4	12	12
		$60<\mathrm{T} \leq 80$	12	\#8	\#5	4	8	12
3.0	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 100$	15	\#8	\#5	4	12	12
		$100<\mathrm{T} \leq 120$	15	\#8	\#5	4	8	12
3.5	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 140$	18	\#9	\#5	4	12	12
		$140<\mathrm{T} \leq 170$	18	\#9	\#5	4	8	12
4.0	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 200$	21	\#9	\#5	4	12	12
4.5	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 200$	24	\#10	\#5	4	12	12
5.0	$0 \leq \mathrm{M} \leq 200$	$0 \leq \mathrm{T} \leq 200$	27	\#10	\#5	4	12	12

Notes: Minimum clear cover to the reinforcing shall be 3 inches.
Spiral spacing shall be measured from the top of the foundation.

FOUNDATIONS FOR TRAFFIC SIGNALS, HIGHWAY SIGNING $\underset{626(05)}{A N D}$ LIGHTING

Embankment slope ent
\#3 Bars @ 12 " Full length of base

Remove unsound ledge and provide level footing, 3'-0" minimum depth

Dowel reinforcing into ledge, full length and grout

Grading shall be done to the satisfaction of the Resident

~ REMOVAL OF CONCRETE FOUNDATIONS ~ ITEM NO. 626.36

FOUNDATIONS FOR TRAFFIC SIGNALS, HIGHWAY SIGNING $\underset{626(06)}{A N D}$ LIGHTING

FOUNDATIONS FOR TRAFFIC SIGNALS.HIGHWAY SIGNING $\underset{626(07)}{\text { AND }}$ LIGHTING

Cost Iron Frame and Cover

Grout Frame in Place on Top of Box

Note: For Use in Sidewalk Areas

~ JUNCTION BOX COVER AND FRAME ~

Install junction box on grade. Grout as necessary as shown.
$\sim ~ P R E C A S T$ CONCRETE JUNCTION BOX ~
ITEM NO. 626./II

ELECTRICAL JUNCTION BOX FOR TRAFFIC SIGNALS, AND LIGHTING

ELECTRICAL JUNCTION BOX FOR TRAFFIC SIGNALS, $\underset{626(09)}{A N D}$ LIGHTING

~ GENERAL NOTES ~

All pavement markings shall be in accordance with the most recent (Manual on Uniform Traffic Control Devices for Streets and Highways), U.S. DOT, FHWA.

Temporary Pavement Markings over Winter Shutdown shall include Yellow Center Line, And White edge lines.

~ SYMBOLS AND ARROWS ~

Stroke width and line width variance shall be no more than $\pm 1 / 4$ "from dimensions shown.

Square foot dimensions shown are pay dimensions, paid by Item No.627.75.
Grid is marked in 4 " intervals except as noted. Symbols and letters shall be proportioned according to grid as shown.

Spacing between characters shall be one unit, but visual spacing may be used.
Spacing between symbol and stop line shall be a minimum of 20^{\prime}. Spacing between symbol and symbol shall be a minimum of 50^{\prime} or as directed by the Resident.

Pavement marking lines on interstates shall be $6^{\prime \prime}$ in width.
$6^{\prime \prime}$ crosswalk lines shall be paid for by Item No. 627.75.
4" lines for parking spaces shall be paid for by Item No. 627.75.

TANGENT SECTION
Pavement Marking Line

String line (IOO') parallel to pavement marking line. Distance from string to pavement marking line shall not vary more than $\pm 2^{\prime \prime}$.

13 sq.ft.

22 sq. ft.

NOTE: See page 627(Ol) for general notes on pavement markings.

PAVEMENT MARKING

Straight Arrow, Straight/Left Arrow, Left Arrow, \& ONLY 627(02)A

NOTE: See page 627(OI) for general notes on pavement markings.

$$
\begin{gathered}
\text { PAVEMENT MARKING } \\
\text { STOP \& AHEAD } \\
627(02) B
\end{gathered}
$$

NOTE: See page 627(OI) for general notes on pavement markings.
 LT Type TR Type LTR
ROUNDABOUT PAVEMENT
MARKING ARROWS ~
 LT Type TR Type LTR
ROUNDABOUT PAVEMENT
MARKING ARROWS ~

?

- MARKING ARROWS

~ TYPICAL PLACEMENT OF PAVEMENT MARKING SYMBOLS at signalized intersections ~

PAVEMENT MARKINGS AT RAILROAD GRADE CROSSINGS

$$
\begin{gathered}
\text { PAVEMENT MARKING } \\
\text { TYPICAL TWO - WAY ROADWAY } \\
627(05)
\end{gathered}
$$

[^6]

~ SCHEMATIC FOR STREET LIGHTING CONTROL CABINET - ONE CIRCUIT ~

240/480V Single Phase
Three Wire Power
Supply

~ SCHEMATIC FOR STREET LIGHTING
CONTROL CABINET - MULTI CIRCUIT ~

6"RISE / 12"TREAD (2:ISLOPE)			
REINFORCING STEEL			
MARK	SIIE	NUMBER	LENGTH (EACH)
R	$\begin{gathered} \text { \#4 } \\ 0.668 \mathrm{lds} . / \mathrm{ft} . \end{gathered}$	(2) each parapet (I) each ft. of width	I/" for "A" +/3.4" for each " B " +/2" for "C"
S	$\begin{gathered} \text { \#4 } \\ 0.668 \text { lbs. } / f t . \end{gathered}$	(2) for "A" (2) for each " B " (2) for " C "	4 " each parapet +12" per ft. of width
CONCRETE CLASS "A"			
	ETION	STEPS PER FT.OF WIDTH	PARAPET EACH WALL
"B"	header inter. Step footer	0.026 cu. yds. $0.031 \mathrm{cu} . y d s$. 0.033 cu. yds.	$0.013 \mathrm{cu} . y d s$. $0.021 \mathrm{cu} . y d s$. $0.022 \mathrm{cu} . y d s$.

8"RISE / 12"TREAD (11/2:/ SLOPE)			
REINFORCING STEEL			
MARK	SIZE	NUMBER	LENGTH (EACH)
R	$\begin{gathered} \text { \#4 } \\ 0.668 \mathrm{lbs} . / f t . \end{gathered}$	(2) each parapet (I) each ft. of width	II" for "A" +14.5" for each " B " +2" for "C"
S	$\begin{gathered} \text { \#4 } \\ 0.668 \text { lbs./ft. } \end{gathered}$	(2) for "A" (2) for each " B " (2) for "C"	4 " each parapet +/2" per ft. of width
CONCRETE CLASS "A"			
	ETION	STEPS PER FT. OF WIDTH	PARAPET EACH WALL
	header inter. Step footer	$0.033 \mathrm{cu} . y d s$ $0.036 \mathrm{cu} . y d \mathrm{~s}$. $0.037 \mathrm{cu} . y d \mathrm{~s}$.	$0.016 \mathrm{cu} . y d s$. $0.025 \mathrm{cu} . y d \mathrm{~s}$. $0.026 \mathrm{cu} . y d \mathrm{~s}$.

Cost of furnishing and placing reinforcing
steel shall be considered included in the price per cubic yard of cast-in-place concrete steps.

[^7]

TRAFFIC SIGNALS

$\sim H E$	OF SPANWIRE	HMENT ~
HORIZONTAL SPAN WIDTH	HEIGHT OF SPANWIRE ATTACHMENT- 5\% Sog Aluminum Heads	HEIGHT OF TOP ATTACHMENT- 2.5\% Sag DOUBLE SPANWIRE Polycarbonate Heads
Up to 38'	$23^{\prime}-0^{\prime \prime}$	$24^{\prime}-4^{\prime \prime}$
40'	23'-6"	$24^{\prime}-6^{\prime \prime}$
45^{\prime}	$23^{\prime}-9^{\prime \prime}$	
50^{\prime}	$24^{\prime}-0^{\prime \prime}$	$24^{\prime}-9^{\prime \prime}$
55^{\prime}	$24^{\prime}-3^{\prime \prime}$	
60^{\prime}	$24^{\prime}-6^{\prime \prime}$	$25^{\prime}-0^{\prime \prime}$
65^{\prime}	$24^{\prime}-9^{\prime \prime}$	
70^{\prime}	25'-0"	$25^{\prime}-3^{\prime \prime}$
75^{\prime}	25'-3"	
80^{\prime}	$25^{\prime}-6^{\prime \prime}$	$25^{\prime}-5^{\prime \prime}$
85'	$25^{\prime}-9^{\prime \prime}$	
90^{\prime}	$26^{\prime}-0^{\prime \prime}$	$25^{\prime}-9^{\prime \prime}$
95^{\prime}	$26^{\prime}-3^{\prime \prime}$	
$10{ }^{\prime}$	$26^{\prime}-6^{\prime \prime}$	$26^{\prime}-0^{\prime \prime}$
105^{\prime}	$26^{\prime}-9^{\prime \prime}$	
110^{\prime}	$27^{\prime}-0^{\prime \prime}$	$26^{\prime}-3^{\prime \prime}$
115	$27^{\prime}-3^{\prime \prime}$	
120^{\prime}	$27^{\prime}-6^{\prime \prime}$	$26^{\prime}-6^{\prime \prime}$
125'	$27^{\prime}-9^{\prime \prime}$	
130^{\prime}	$28^{\prime}-0^{\prime \prime}$	$26^{\prime}-9^{\prime \prime}$
$135{ }^{\prime}$	$28^{\prime}-3^{\prime \prime}$	
140^{\prime}	$28^{\prime}-6^{\prime \prime}$	$27^{\prime}-0^{\prime \prime}$
145^{\prime}	$28^{\prime}-9^{\prime \prime}$	
150^{\prime}	29'-0"	$27^{\prime}-3^{\prime \prime}$
155'	$29^{\prime}-3{ }^{\prime \prime}$	
160^{\prime}	29'-6"	$27^{\prime}-6^{\prime \prime}$
165^{\prime}	29'-9"	

~ GENERAL NOTES for TRAFFIC SIGNAL SPANWIRE ~

1. Height of Spanwire attachment is shown on chart above. When attaching to utility company owned poles, the Contractor shall check with respective utility companies to determine if all adjustments have been made.
2. When utility pole clearances cannot be met, the signal Spanwire shall be protected by schedule 40 line duct.
3. The utility companies shall be responsible for avoiding the Traffic Signal Clear Zone as shown below. At the Pre-construction Utility Meeting, conflicts. if any, will be resolved.
4. Conduits installed on utility company owned poles will be installed by the respective utility. The conduit will be provided by the signal Contractor.
5. Utilities will be no lower than 19 feet at mid span.
6. The location of all signal equipment and related items shall be in conformity with 'Americans with Disabilities Act' (ADA) accessibility standards. Use of sidewalks and pedestrian ramps shall not be obstructed.
7. Lane use shall be hung using "Pelco" assembly part no. SE-5/ll or equal. Vehicular heads shall be hung using 'Pelco' assembly part no. SE-5024 or SE-5073, or equal.

SPANWIRE
 TRAFFIC SIGNALS

643(02)

Utility Clear ZoneNo utility lines shall cross in front of vehicular signal heads, within lOOft. unless approved by Resident

\sim TYPICAL MAST ARM, STREET LIGHT
INSTALLATION \sim

TRAFFIC SIGNALS

> TRAFFIC SIGNALS
> 643(04)

~ CURB SECTION ~

Provide $10^{\prime \prime}$ min clearance at edge of shoulder

Wood pole
Conduit couplings
Edge of povement

NOTES:
Location and configuration of loops are subject to approval of the Resident in the field. Number of turns of wire in loops and number of loops per amplifier shall be in accordance with the manufacturer's recommendations. Loop slots shall be filled with an approved two-component epoxy embedding sealer.

TRAFFIC SIGNALS

 ~ PEDESTAL POLE ~

TRAFFIC SIGNALS

TRAFFIC SIGNALS

TRAFFIC SIGNALS

NOTE:
All work shall conform to applicable portions of The Standard Specifications and The Standard Details.
\sim TYPICAL FLASHING BEACON INSTALLATION ~
ITEM NO. 643.60

TRAFFIC SIGNALS
643(IO)

Detail A ~ I2" EXTRUDED
~ 6" EXTRUDED
ALUMINUM PLANK ~ ALUMINUM PLANK ~

7/16" Bia.

Attach Planks Together With $3 / 8^{\prime \prime} \times 3 / 4 "$ 7/8" \times 7/16" Bolts, Nuts, and Washers, 12" C:C Dis. Slots

$$
\sim \text { DETAIL - B ~ }
$$

~ BOLT HOLE PUNCHING PLAN
FOR EXTRUDED ALUMINUM PLANKS ~

~ SIDE TRIM

~ DETAIL - A ~

Post clip bolts shall be stainless steel on all overhead signs
~ POST CLIP BOLT ~

~ POST CLIP ~
HIGHWAY SIGNING

ITEM NO. 645.25/
TYPE I SIGNS HIGHWAY SIGNING

Bolt holes in sign panels shall be located as shown in "Standard Highway Signs".

ATTACHMENT OF SIGNS, REGULATORY, WARNING, AND ROUTE MARKER ASSEMBLY SIGNS, TYPE ITO H-BEAM POSTS

ITEM NO.645.271

ATTACHMENT OF SIGNS, REGULATORY, WARNING, AND ROUTE MARKER ASSEMBLY SIGNS, TYPE ITO H-BEAM POSTS

ITEM NO.645.27I

STANDARD H-BEAM POSTS for TYPE I SIGNS

Deceleration lane Double white, lOOft spoce.

Right curved ramp. Single yellow, left side, spaced as outlined in MUTCD

Tangent ramp lOOft spoce, Single White

Acceleration lane Double white, lOOft space.
ramp

Right curved ramp, Single yellow, left side, spaced as outlined in MUTCD

四

NOTE:
Locations of Delineators shall be 528 ft , $10 / \mathrm{mile}$ on mainline, subject to approval of the Resident. Delineators on ramps shall be placed as shown here and in the MUTCD. When placing delineators in the area of any Highway Lighting, follow normal DIGSAFE procedures.
lOOft space, Single
White
~ TYPICAL PLACEMENT OF DELINEATORS Deceleration lane AT INTERCHANGES ~ Double white, lOOft space.

4" $\times 4^{\prime \prime}$ with High Intensity Sheeting or 3" \times 3" with Diamond Grade Sheeting

~ DOUBLE DELINEATOR ~
~ DELINEATORS ~

DELINEATORS

White Background AVO
Black Letters and
Legend
Borders

White Background
Figure
$5 /$ Black Letters and Legend
 fries ' D '
Use Symbols for
$24^{\prime \prime}$ Shields
Blue Background
White Legend,
Border, Symbols lies ' D^{\prime}
Use Symbols for
$24^{\prime \prime}$ Shields
Blue Background
White Legend,
Border. Symbols fries ' D^{\prime}
Use Symbols for
$24^{\prime \prime}$ Shields
Blue Background
White Legend,
Border. Symbols lies ' D^{\prime}
Use Symbols for
$24^{\prime \prime}$ Shields
Blue Background
White Legend,
Border. Symbols fries ' D^{\prime}
Use Symbols for
$24^{\prime \prime}$ Shields
Blue Background
White Legend,
Border. Symbols
24" $\times 30^{\prime \prime}$ For 3 Digit Rte Number 36" $\times 45^{\prime \prime}$ For 3 Digit Rte Number When Using MI-5 on Guide Signs Omit the Border. White Background, Black Legend and Border.

Green Background TOWNLINE SIGN White Border and Legend

$$
\begin{gathered}
\text { STATE OF MAINE SIGNS } \\
\text { HIGHWAY SIGNING }
\end{gathered}
$$

~ LAP SPLICE NOTES ~ 1. Gold spacers (I/2 "thick) are coupled with 3.4 or $5 \mathrm{lb} / f t$ stub posts.
2. Silver spacers (3/8"thick) are coupled with $2,21 / 2$, or $23 / 4 \mathrm{lb} / \mathrm{ft}$ stub posts.
3. Secure grade 9 bolts with 20 foot pounds of torque.
4. Same weight posts and stubs leave a small gap between the spacer bar and post (this is acceptable according to the manufacturer).
 on stub weight)

2 flat washers and self-locking hex nuts per post. A $3 / 4 " x$ 5" plated spacer bar shall be used per post. This spacer is to stiffen the connection.

~ INSTALLATION NOTES ~

1. Required-matching shaped u-channels. (weight per foot does not need to match)
2. Mount permanent signs that are wider than 30 " (larger than $6.25 \mathrm{ft}^{2}$) on wood posts.
3. Mount signs 5 feet (min.) Above pavement or curb (when present) in rural areas, 7 feet (min.) where parking is permitted within 200 feet of the sign (urban areas).

~ (Crosh Worthy) Breakoway System \sim

$$
\begin{gathered}
\text { ~ U-CHANNEL BREAK AWAYS ~ } \\
\text { INSTALLATION OF TYPE II SIGNS } \\
\text { HIGHWAY SIGNING \& BREAK AWAY POSTS } \\
\text { G45(09)A }
\end{gathered}
$$

Refer to Section 645.061 of the Standard Specifications to determine the size of wood posts. All wood posts and brackets shall be pressure treated to CCA 40. On 4"x6" and 6"x6" wood posts, drill holes as shown above, to meet breakaway standards.

STEEL U-CHANNEL POST INSTALLATION

NOTES:

1) Posts to be plumbed \& set in compocted/tamped moterial
2) Top of PVC pipe shall hove no more than I inch reveal from finished surface povement
3) Installation shall meet all requirements found in Standard Specification 645.061
~ ISLAND SIGN POST SLEEVE ~
Installation of type II signs HIGHWAY SIGNING \& BREAK AWAY POSTS

~ PLAN - SMALL SIGN PANEL SUPPORT LAYOUT ~

Max. skew permitted: 50 degrees Max. height of sign permitted, $14^{\prime}-0^{\prime \prime}$

* Note: L = Width of sign
*x Anchoring eyelet for barriers only (See Anchorage Eyelet Detail)

ITEM NO.645.13
OVERPASS MOUNTED SIGN SUPPORT
HIGHWAY SIGNING

> ~ PLAN - MEDIUM SIGN PANEL SUPPORT LAYOUT ~
> Max. skew permitted: 30 degrees
> Max. height of sign permitted, $14^{\prime}-0^{\prime \prime}$
> * Note: L = width of sign
> ** Anchoring eyelet for barriers only. (See Anchorage Eyelet Detail)

ITEM NO.645./3
OVERPASS MOUNTED SIGN SUPPORT
HIGHWAY SIGNING

~ PLAN - LARGE SIGN PANEL SUPPORT LAYOUT ~

Max. skew permitted: 30 degrees
Max. height of sign permitted, $14^{\prime}-0^{\prime \prime}$

* Note: L = Width of sign
${ }^{* x}$ Anchoring eyelet for Darriers only. (See Anchorage Eyelet Detail)

ITEM NO. 645.13
OVERPASS MOUNTED SIGN SUPPORT
HIGHWAY SIGNING

Single Panel

Two equal
Panels

Three equal
Panels

~ TYPICAL ELEVATION - VERTICAL BRACING ~
ITEM NO.645.13
OVERPASS MOUNTED SIGN SUPPORT
HIGHWAY SIGNING

$$
\begin{aligned}
& \sim \text { PLAN VIEW } \\
& 2 \text { - BRACKET }
\end{aligned}
$$

~ PLAN VIEW 3 - BRACKET~

~ PLAN VIEW 4 - BRACKET~

\sim PLAN VIEW
$2-B R A C K E T \sim$

\sim PLAN VIEW
3 - BRACKET ~
Face of curb/ parapet/F-shaped barrier or web

~ TYPICAL LATERAL BRACING ~
~ TYPICAL LATERAL BRACING TOP OR BOTTOM ~

$$
\text { ITEM NO. } 645.13
$$

OVERPASS MOUNTED SIGN SUPPORT

ITEM NO.645.13
OVERPASS MOUNTED SIGN SUPPORT
HIGHWAY S45(16)

,

ITEM NO. 645.13
OVERPASS MOUNTED SIGN SUPPORT
HIGHWAY SIGNING
AND ANCHOR BOLT SYSTEM
OVERPASS MOUNTED SIGN SUPPORT

ITEM NO.645.13
OVERPASS MOUNTED SIGN SUPPORT
HIGHWAY SIGNING

* Anchorage Eyelet shall be attached so that it is capable of supporting a dead weight load of $5400 \mathrm{lbs}(2400 \mathrm{kN})$

Anchorage Eyelet shall be galvanized to the requirments of ASTM Al53 or shall be Stainless Steel.
a. Block-out opening is $6^{\prime \prime}$ high by $6^{\prime \prime}$ wide.
b. Drill hole for eyelet shank $1 / 4$ " larger than shank diameter and fill void with grout selected from MaineDOT Prequalified List of Anchoring Material
c. Following installation of eyelet hardware, patch block-out with an MaineDOT approved patching material that matches the barrier concrete.
d. Nuts shall meet the requirements of ASTM A563.
e. Washers shall meet the requirements of ASTM F436.

~ ANCHORAGE EYELET DETAIL ~
ITEM NO.645.13
OVERPASS MOUNTED SIGN SUPPORT
HIGHWAY SIGNING

1. The support frame dimensions shall be determined by the Contractor. These shall be based on the sign size, bridge skew angle, and cross-sectional geometry. Field verification of these parameters is the responsibility of the Contractor. The Contractor shall consider the possibility of interferences such as splice plates, drains, stiffeners, etc. in developing the shop drawings.
2. The Contractor shall select an appropriate layout using the views in these Standards as a guide in order to determine the number of brackets, the configuration of the vertical bracing and the configuration of the lateral bracing.
3. The support frame is designed such that the Contractor may fasten chords, vertical and horizontal bracing using a single bolt per connection in an oversized hole for erection purposes. When the frame is in final desired position, adjustments may be accomplished and remaining bolt holes may be drilled in the field using the connected components as a template.
4. The Contractor shall select an appropriate chord base plate for attaching to a concrete barrier, curb or parapet, using the views in these Standards as a guide. An accommodating anchor bolt system shall be selected from this Stondard.
5. All work and materials shall conform to the applicable provisions of Section 504. Structural Steel, of the Standard Specification Highways and Bridges.
6. All Steel components shall be galvanized after fabrication in accordance with ASTM AI23, except that hardware used in the connections of the structural frame shall meet the requirements of either ASTM A/53 or ASTM B695, Class 50, Type 1. Parts except hardware shall be blast-cleaned prior to galvanizing in accordance with SSPC-SP6.
7. Materials:

Hollow steel sections shall meet the requirements of ASTM A500, Grade B.
Steel plate shall meet the requirements of ASTM A572, Grade 50. Steel shapes shall meet the requirements of ASTM A992.

Steel shim plates shall meet the requirements of ASTM A36.

ITEM NO.645./3
 OVERPASS MOUNTED SIGN SUPPORT HIGHWAY SIGNING

645(22)

Bolting assemblies used in the connections of the structural frame shall be Heavy Hex Head 3/4" and meet the requirements of ASTM A325. The Contractor shall select appropriate bolt lengths.

Anchor bolt assemlies used to fasten the structural frame to a concrete curb, barrier or parapet shall meet the requirements of ASTM A449, Type I with a minimum yield strength of 55 KSI .

Remaining materials used shall be as specified elsewhere in these Standards or in the Contract Documents.
8. Fastener nuts in anchor and bolt assemblies shall be tightened to a snug fit and given an extra 1/8 turn. Fastener assemblies in oversized holes shall have washers under bolt heads and nuts.
9. Holes that are field drilled shall be coated with an approved zinc-rich primer prior to final erection.
10. A random 25% of all base plate to chord welds and chord to Flange Connection Plate welds shall be MT inspected. Only a one-time repair is allowed on these welds without written permission of the Engineer. All other welds shall be subject to VT inspection.
II. Anchor bolts shall be installed with misalignments of less than l:40 from theoretical location.
12. An anchorage eyelet shall be installed approximately midpoint between each bracket when a concrete barrier is utilized as the top chord attachment.
13. Preformed pads, specified in Section 713. Structural Steel and Related Material, of the Standard Specifications Highways and Bridges, shall be placed between each chord base plate and concrete surface.
14. The Contractor may use shim plates, as provided by this Standard, beneath all base plates and Flange Connection Plates as necessary, up to an ad justment of $1 / 2$ ".

ITEM NO.645.13
OVERPASS MOUNTED SIGN SUPPORT

~ DRUM ~
(Non - metal)

~ CONE ~
(Standard)

CHANNELIZING DEVICES

CHANNELIZING DEVICES

~ VERTICAL PANELS ~

NOTES:

1. Vertical panels shall have alternate orange and white high intensity retroreflective stripes as shown.
2. Drums may be weighted with up to 22 Lbs of dry sand.
3. Ballast shall not be placed on top of a drum.
4. Temporary raised pavement marker color shall correspond with pavement striping color as follows: clear markers for white striping and amber markers for yellow striping.

CHANNELIZING DEVICES

NOTES:

1. All signs shall conform to the applicable provisions of the current edition of the "Manual on Uniform Traffic Control Devices for Streets and Highways". FHWA; and to "Standard Highway Signs". FHWA. Refer to current edition of MUTCD.
2. Steel U-channels are required as sign posts.
3. Mount signs that are wider than 3 feet or larger than one square yard in area on two or more posts.
4. When parking is permitted within 200 feet of the sign, mount the sign a minimum of 7 feet above the pavement surface.
5. When using lap splice see detail 645(24) for installation requirements.

ROADWAY,
NOTES: " A^{\prime} " Cones.
6. For operations that require a shoulder closure for a day or less, drums may be replaced with Type

~ TYPICAL APPLICATION: ONE - WAY OR TWO - WAY,
TWO LANE ROADWAY, CLOSING SHOULDER ~

CONSTRUCTION TRAFFIC CONTROL

NOTES:
Barrier
Barrier placement is in accordance with the most current edition of the AASHTO Roadside Design Guide.
2. Terminate barrier ends outside the clear zone or protect the ends with an impact attenuator.
3. Right lane closure is shown. For left lane closure, substitute signing with w20-5L \& W4-2L.
(

* Round to nearest mile \& do NOT use if project length
is less than $3 / 4$ of a mile
~ PROJECT APPROACH SIGNING ~
EXPRESSWAY

CONSTRUCTION TRAFFIC CONTROL

CONSTRUCTION TRAFFIC CONTROL

ROAD CLOSURE WITH ONE LANE DIVERSION loW volume road with adequate sight distance

ROAD CLOSURE WITH TWO WAY LANE DIVERSION

* Formulas for L are as follows:

TYPE OF TAPER	TAPER LENGTH (L)*	For speed limits of 40 mph or less:
Merging Taper	at least L	$L=\frac{W S^{2}}{60}$
Shifting Taper	at least 0.5 L	For speed limits of 45 mph or great
Shoulder Taper	at least 0.33 L	$L=W S$
One-Lane, Two-Way Traffic Taper	100 ft maximum	* Formulas for L are as follows:
Downstream Taper	100 ft per lane	A minimum of 5 channelization devices be used in the taper.

3. Shoulder taper allowed when a minimum of 10 feet can be open from centerline for lane.
SUGGESTED BUFFER

Speed (mph)	Length (feet	Speed (mph)	Length (feet
20	115	40	325
25	155	45	360
30	200	50	425
35	250	55	495

DIVISION 800

MISCELLANEOUS DETAILS

GENERAL NOTES:

1. The sidewalk width shall be paved in all cases.
2. All residential or commercial entrances 10% and over shall be paved.

NOTES ON MAXIMUM ENTRANCE PROFILES:

1. These profiles are a guide for the majority of cases, but should be field checked when the main line grade is steep (4\% to 6\% or greater) or the angle of approach to the entrance is unusual.
2. Generally the majority of entrances on a project will be built with flatter profiles than these maximum coses.
3. When grading entrances which are flatter than the maximum profiles the following rule of thumb should be used. Do not exceed a grade \% change of more than 9\% in a 6 foot increment of entrance length. This applies to both up and down profiles.
4. Entrances with grades exceeding 15% must have a design ${ }^{1}$ exception. Field entrances with grades exceeding 22% must hove a ${ }^{1}$ design exception.
5. Any design change to an existing entrance that is steeper than (+ or -) 6% that adversely changes the grade (+ or -) by more than 3\% will require a ${ }^{1}$ design exception.
${ }^{1}$ Design exception to be approved by Program Manager (or designee).

ENTRANCES ON SIDEWALK SECTIONS

1. The first 3 feet shown as povement shall be paved only when abutting a paved area.
2. All residential or commercial entrances 10\% and over shall be paved.

NOTES ON MAXIMUM ENTRANCE PROFILES:

1. These profiles are a guide for the majority of cases, but should be field checked when the main line grade is steep (4% to 6% or greater) or the angle of approach to the entrance is unusual.
2. Generally the majority of entrances on a project should be built with flatter profiles than these maximum coses.
3. When grading entrances which are flatter than the maximum profiles the following rule of thumb should be used. Do not exceed a grade \% change of more than 9% in a 6 foot increment of entrance length. This applies to both up and down profiles.
4. Entrances with grades exceeding 15\% must have a ${ }^{1}$ design exception. Field entrances with grades exceeding 22% must have a ${ }^{1}$ design exception.
5. Any design change to an existing entrance that is steeper than (+ or -) 6% that adversely changes the grade (+ or -) by more than 3\% will require a ${ }^{1}$ design exception.
${ }^{1}$ Design exception to be approved by Program Manager (or designee).

ENTRANCES ON NON-SIDEWALK SECTIONS

(1) Entrance angle should not be less than 45°.

Entrances with a high number of truck movements may be designed on an individual basis.

~ GRAVEL ENTRANCE ~ ~ PAVED ENTRANCE ~
(1) Entrance angle should not be less than 45°.

~ PAVED ENTRANCE ~

NOTES:

1. This type of entrance is suitable for other high traffic volume, public-type installations.
2. All island borders shall be curbed.

SHOPPING CENTER ENTRANCE ONTO highway - PAVED ShOULDERS 80/(05)

Provide 3^{\prime} min. paved apron on all projects.

Pave apron from gutter to back of sidewalk at gravel entrances.

Sidewalk or
Sidewalk and Esplanade

Terminal Curb (Typ.) Edge of Travel Lane | Non-Sidewalk | Sidewalk |
| :--- | :--- |

$$
\sim \text { GRAVEL ENTRANCE ~ }
$$

Highway \mathbb{E}

$$
\sim \text { PAVED ENTRANCE ~ }
$$

NOTES:
(1) Minimum curb opening is 20^{\prime} where the shoulder width is $\geq 6^{\prime}$ and 26' where the shoulder width is $<6^{\prime}$.

(1) Minimum entrance angle is 45° where the shoulder width $\geq 6^{\prime}$ and 60° where the shoulder width < 6^{\prime}.

If there are high truck turning volumes, the designer should consider providing turning radii of $15^{\prime}-25^{\prime}$ and/or a wider opening and/or limiting the angle of turn to accomodate trucks.

UNCURBED COMMERCIAL/INDUSTRIAL ENTRANCE ONTO CURBED HIGHWAY (WITH/WITHOUT SIDEWALK) 80/(07)

(1) Minimum entrance angle is 45° where the shoulder width $\geq 6^{\prime}$ and 60° where the shoulder width < 6^{\prime}.

CURBED COMMERCIAL/INDUSTRIAL ENTRANCE ONTO CURBED HIGHWAY WITH/WITHOUT SIDEWALK

(1) Where parking of Service Area abuts sidewalk, a curb, guardrail or fence should be provided.
(2) Island width will extend within I' of Right-of-Way line, if practical. When island width exceeds 10 , use design in figure 8-41 in Highway Design Guide.
(3) If there are high truck turning volumes, the designer should consider providing turning radii of 15'-25' and/or wider opening and/or limiting the angle of turn to accomodate trucks.
(4) If project requires a traffic movement permit then truncated domes will be required.

COMMERCIAL/INDUSTRIAL DOUBLE ENTRANCES ONTO CURBED HIGHWAY
 (NARROW RIGHT-OF-WAY)
 80/(09)

T.W. = Traveled Way Pavement \& Cross - slope
S. = Shoulder Povement \& Cross - slope

PAVEMENT TRANSITION AT BRIDGE

GENERAL NOTES

1. When the sidewalk is less than $5^{\prime}-0^{\prime \prime}$ in width, a minimum pad $5^{\prime}-O^{\prime \prime} \times 5^{\prime}-O^{\prime \prime}$ sloping no more than 2% shall be provided whenever a change in direction must be made.
2. There shall be a minimum of $12^{\prime \prime}$ Aggregate Subbase Course-Gravel under the $2^{\prime \prime}$ pavement on pedestrian ramps.
3. Curb openings for pedestrian ramps shall be $6^{\prime}-0^{\prime \prime}$ minimum.
4. Detectable Warning Fields shall be installed at each pedestrian ramp in accordance with The Americans With Disabilities Act (ADA) specifications and guidelines.
~ PERSPECTIVE VIEW ~ (not to scale)

7 ft. Sidewalk

Note:

This less desireable design should not be used unless design constraints require it. Does not provide directional cues. Use Option 2 when possible.

$$
\text { PEDESTRAIN } \underset{80(12)}{R A M P}-\text { OPTION I }
$$

~ SECTION A-A ~
Note:
This less desireable design should not be used unless design constraints require it. Does not provide directional cues. Use Option 2 when possible.

Must use Detectable Warnings that match the radius of the curb.

$$
\text { PEDESTRIAN } \underset{80(14)}{\text { RAMPS - OPTION } 3}
$$

~ PERSPECTIVE VIEW ~

Note:
This less desireable design should not be used unless design constraints require it. Does not provide directional cues. Use Option 2 when possible.

Must use Detectable Warnings that match the radius of the curb.

~ PERSPECTIVE VIEW ~

~ SECTION A-A ~

*24" Except where island or medians are less than 4' wide. The detectable warning should extend across the full length of the cut through the island or median.

$$
\begin{gathered}
\text { PEDESTRIAN RAMP } \\
\text { ISLAND - CURB TYPE } 5 \\
{ }_{80}(16)
\end{gathered}
$$

Sidewalks less than 60" in width require a $5^{\prime}-0^{\prime \prime} \times 5^{\prime}-0^{\prime \prime}$ passing area every 200'。

NOTES:

1. Width may vary depending on type of material chosen.
2. Follow Manufacturer's recommendations for anchoring blanket ends, overlaps, and staple spacing. Dimensions for these activities are to be used as a minimum.
3. Staples may be as provided or biodegradable staples according to the Qualified Products Listx.
4. See section 717.06I of the MaineDOT Standard Specification or MaineDOT Qualified Products List*.
*http:/ / www.maine.gov /mdot/transportation-research/qpl.php
5. Reference the most recent version of the MaineDOT Best Management Practices for Erosion and Sedimentation Control Manual.

$$
\begin{gathered}
\text { EROSION CONTROL BLANKET } \\
\text { SLOPE APPLICATION } \\
802(01)
\end{gathered}
$$

~ UNCOVERED CHANNEL SIDE SLOPES ~

Anchor according to detail

3' max. spacing between staples \square
 ~ COVERED CHANNEL SIDE SLOPES ~
NOTES:

1. Width may vary depending on design flows, channel side slopes, and type of material chosen.
2. Follow Manufacturer's recommendations for anchoring blanket ends, overlaps, and staple spacing. Dimensions shown for these activities are to be used as a minimum.
3. Staples may be as provided or biodegradable staples according to the Qualified Products Listx.
4. See Section 717.06/ of the MaineDOT Standard Specifications or MaineDOT Qualified Products List..
*http:/ / www.maine.gov/mdot/transportation-research/qpl.php
5. Reference the most recent version of the MaineDOT Best Management Practices for Erosion and Sedimentation Control Manual.

EROSION CONTROL BLANKET DITCH APPLICATIONS

The coupler can be any acceptable device used to tie the poles together

Section A

$$
\sim \text { TOP VIEW ~ }
$$

REF:
Best Management Practices for Erosion and Sedimentation Control Level Spreader

SILT FENCE
SEDIMENT BARRIER 802(04)

NOTES:

1. The dimensions shown are approximate and may be modified in the field by the Resident.
2. Riprap will be required on portions of the culvert end treatment of 2:\%

The remaining portion shall be loamed, seeded and hay mulched as directed.
3. Culverts installed on 2:l slopes shall have riprap laid on a 2:l slope around the inlet and outlet.

REF: Best Mngmt. Practices for Erosion and Sediment Control-Culvert Inlet I Outlet Protection.

REF: Best Management Practices for Erosion and Sediment Control -
Temporary Slope Drains

RIPRAP DOWNSPOUT 802(06)

REF: Best Mngmt. Practices for Erosion and Sedimentation Control -
Temporary Slope Drains

TEMPORARY SLOPE DRAINS 802(07)

~ SLOPE DRAIN INLETS ~

REF: Best Mngmt. Practices for Erosion and Sedimentation ControlTemporary Slope Drains

TEMPORARY SLOPE DRAIN INLETS 802(08)

~ SECTION ~

NOTES:

1. 'La' = Length of Apron. Distance 'La' shall be of sufficient length to dissipate energy
2. Apron shall be set to a zero grade and aligned parallel to water flow. 3. Filter material shall be filter fabric or 6"thick minimum graded gravel layer.
3. Reference: Best Management Practices for Erosion and Sediment Control -

Energy Dissipater Riprap Apron
5. This detail shall apply to pipe diameters of $36^{\prime \prime}$ or less.
6. Larger diameter pipes shall be designed by a professional engineer.
7. Reference: Riprap spec.703.29

ENERGY DISSIPATER - RIPRAP APRON

~ SECTION ~

NOTES:

1. Riprap shall be underlain by gravel bedding or non-woven geotextile.
2. REF: Best Management Practices for Erosion and Sediment Control-Energy Dissipater.
3. This detail shall apply to pipe diameters of $36^{\prime \prime}$ or less. Plunge pools for large diameter pipes shall be designed by a professional engineer.

ENERGY DISSIPATER - PLUNGE POOL

NOTE:
Unless specified, stone shall meet requirements of material specification 703.29 stone ditch protection.

~ PROFILE @ DITCH ~

REF: Best Management Practices for Erosion and Sedimentation Control Check Dam

STONE CHECK DAM 802(II)

Bury geotextile a depth of $6^{\prime \prime}$ min. below ground line

NOTE: Use Silt Fence inlet protection in sump locations only. Sheet flow less than lacre Drainage Area not in paved areas or with concentrated flows.

REF: Best Management Practices for Erosion and Sedimentation Control Storm Drain Inlet Protection

~ SECTION ~

NOTES:

1. Use Stone aggregate and non-woven geotextile inlet protection only in sump locations where heavy concentrated flows are expected.
2. Do not use where ponding around the structure might cause inconvenience or damage.
3. Stone aggregate shall be Stone For French Drain 703.24 or approved by the Resident.
4. Ref: Best management Practices for erosion and sedimentation controlStorm Drain Inlet Protection.

STONE AGGREGATE \& GEOTEXTILE CB/ INLET GRATE UNIT PROTECTION 802(13)

$$
\begin{aligned}
& \text { Spillway Riprap Outlet Structure } \\
& \qquad B^{\prime} \sim \operatorname{PLAN} \text { VIEW } \sim
\end{aligned}
$$

$$
\sim \text { SECTION B-B' } \sim
$$

REF:
Best Management Practices for Erosion and Sedimentation ControlSediment Traps

SEDIMENT TRAP

> Sandbags (Typ.)
> Channel Lining

Temporary

 Diversion Channel

~ SECTION A-A ~

NOTES:

1. Most non-woven geotextile is available in 12.5^{\prime} \& 15^{\prime} widths.

2. Overlap all temporary sediment basin geo-textile joints by I' minimum.
3. Design basin according to Best Management

Practices for Erosion and Sedimentation
Control - Temporary Sediment Basin.

Stone for French Drain (or Stone Ditch Protection) over length and width of structure
~ PROFILE ~

REF: Best Management Practices for Erosion and Sedimentation Control Stabilized Construction Entrance/Exit

$$
\text { CONSTRUCTION } \underset{802(17)}{E N T R A N C E / E X I T}
$$

~ RAILROAD SECTION ~
Not to Scole

PAVING DETAIL

ADDITIONAL PAVING NOTES

The Department will pay for the work specified in Subsection 40I.ll for the HMA used, except that cleaning objectionable material from the pavement and furnishing and applying Item 409.15 bituminous material to joints and contract surfaces is incidental.

A tack coat of emulsified asphalt, RS-I or HFMS-I, Item 409.15 shall be applied to any existing pavement at a rate of approximately $0.025 \mathrm{gal} / \mathrm{sq} . \mathrm{yd}$, and on milled pavement approximately $0.05 \mathrm{gal} / \mathrm{sq} . y d$, prior to placing a new course. All joints between existing and new pavement will be tacked.

Crossings shall be paved within 20 days following the completion of the crossing reconstruction.

Paved shoulders within the gage of the rail to point $24^{\prime \prime}$ outside of the field side of each rail shall be a standard 6" depth of pavement. Paved shoulders outside of this area shall be paved with 2 " surface mix only.

- The bituminous binder material for the mixture shall be viscosity grade AC-IO or 20 asphalt cement.
- The density requirements are waived.

$$
\begin{gathered}
\text { PAVING DETAIL } \\
\text { PAVING NOTES } \\
803(04)
\end{gathered}
$$

RAILROAD CROSSING GENERAL NOTES

1. The highway section over railroad crossings shall be designed with a minimum of 2-ll ft travelways and 6' shoulders. 4' shoulders may be designed if field conditions warrant.
2. Signals shall be located as per standard detail and shall comply with the latest edition of the Manual of Uniform Traffic Control Devices.
3. The standard crossing surface shall consist of a rubber railseal interface as manufactured by Polycorp or Performance Polymers, Inc, or approved equivalent. Alternative crossing surfaces may be installed with approval of MaineDOT.
4. New 136 \# prime welded rail shall be provided for crossing reconstruction. The minimum length of welded rail shall be II7' or extend 30' beyond each edge of pavement whichever is longer. The full depth excavation area shall extend 10^{\prime} beyond the welded rail and excavated to a minimum depth of 12 " below bottom of tie elevation.
$5.7^{\prime \prime} \times 9^{\prime \prime}$ ties ($8^{\prime \prime} 6^{\prime \prime}$ or 9^{\prime} long) shall be installed under the welded rail and shall be fully box anchored. Anchors may be omitted beneath the crossing surface in order to accommodate the installation of rubber railseal.
5. Geotextiles provided for rail crossings shall be the following minimum weights: 8 oz./s.y. for non-woven fabrics and 6 oz . /s.y. for woven fabrics. The minimum width through the crossing area shall be 17'. Geotextile fabrics shall be placed throughout the entire full depth construction area.
6. Construction signs and traffic control devices shall be erected and maintained during the construction of the project.
7. Field work performed between December 15 and March 15 shall be approved in advance by the MaineDOT Resident.
8. Erosion Control shall be installed and maintained as per approved Erosion Control Plan until all permanent measures are in place.

RAILROAD CROSSING GENERAL NOTES

Descrip.	Grad.	Item	Bit. Cont.	Total	No. of	Complementary
of Course	Design	No.	$\%$	of Mix	Thick.	Layers
Notes						

Railroad Planning
(6" Povement Depth)

Wearing	$1 / 2 " 1$	403.208	N/A	$1 / 2 " 1$	1	4.9 .17
Binder	$3 / 4^{\prime \prime}$	403.207	N/A	$4^{\prime \prime} / 2^{\prime \prime}$	2	4.9 .17
		\sim NOTES \sim				

1. The design traffic levelfor the mix placed shall be 0.3 to <3million ESALS
2.Section 106.6 Acceptance, (2) Method C-For hot mix asphalt designated as Method C in Special Provision Section 403 - Hot Mix Asphalt, one sample will be taken from the paver hopper or the truck body per 250 ton per pay item. The mix will be tested for gradation and PGAB content. Disputes will not be allowed. If the mix is within tolerances listed in Table 9. Method C the Department will pay the contract unit price.

Property	USL and LSL - Method C
Percent passing 3/16" [No. 4] and larger sieves	Target +/- 7
Percent possing 3/32" [No. 8] to 1.18 mm [No. 16] sieves	Target + /- 5
Percent passing 1/32" [no.30] sieve	Target + /- 4
Percent passing 1/64" [No. 50] to $0.003^{\prime \prime}$ [No. 200] sieve	Target + /- 3
PGAB Content	Target +/- 0.5

If the test results for each 250 ton increment are outside these limits the following deductions (Table 9b) shall apply to the HMA quantity represented by the test. A second consecutive failing test shall result in cessation of production.

$$
\text { ~ TABLE } 9 B \text { ~ }
$$

PGAB Content	-5%
No. $8-3 / 32^{\prime \prime}$ sieve	-2%
No. $50-1 / 64^{\prime \prime}$ sieve	-1%
No. $200-0.003^{\prime \prime}$ sieve	-2%

3. Compaction of the new Hot Mix Asphalt Pavement will be obtained using a minimal roller train consisting of a 3-5 ton vibratary roller. An approved release agent is required to ensure the mixture does not adhere to hand tools, rollers, pavers, and truck bodies. The use of petroleum based fuel oils will not be permitted.

RAILROAD CROSSING PAVING NOTES

Rail Superelevation

Same \% Grade as Rail
Superelevation
~ RAIL ROAD CROSSING GRADING ~

NOTE:
The slope of the 8^{\prime} shown, in no case, shall be above the plane of the rails either side of C/L per P.U.C. General Order \# 2.

RAIL ROAD CROSSING GRADING

Key:

- Flagger
- Channelizing devices

Channelizing devices separate work area from traveled way.

NOTE:

1. Flood lights should be provided to mark flagger stations at night as needed.
2. If entire work area is visible from one station, a single flagger may be used.
3. Warning lights should be used to mark channelizing devices at night as needed.
4. Channelizing devices are to be extended to a point where they are visible to approaching traffic.

TYPICAL APPLICATIONS OF TRAFFIC CONTROL

 DEVICES ON 2-LANE HIGHWAY. ONE LANE IS CLOSED AND FLAGGING IS PROVIDED.Use Highest
Posted Speed

20 mph
25 mph
30 mph
35 mph
40 mph
45 mph
50 mph
55 mph
60 mph

Minimum Distance (Feet)

225
325'
450'
550'
650^{\prime}
750^{\prime}
850'
950^{\prime}
$1 / 00^{\prime}$
~ SUGGESTED MIn. PAVEMENT MARKING PLACEMENT DISTANCE ~

NOTES:

1. When used, a portion of the pavement marking symbol shall be directly opposite the Advance Warning Sign (W IO-I). If needed, supplemental pavement marking symbol(s) may be placed between the Advance Warning Sign and the crossing, but should be at least 50' from the Stop Line.
2. A three lane roadway should be marked with a centerline for two-lane approach operation on the approach to a crossing. On multi-lane roads the transverse bands should extend across all approach lanes, and individual RXR symbols should be used in each approach lane.
3. Refer to Standard Alphabet for Highway and Markings for RXR symbols details.

TYPICAL SIGNAL LOCATION AND PAVING PLAN FOR SQUARE CROSSING

TYPICAL SIGNAL AND GUARD RAIL LOCATIONS FOR ACUTE ANGLE CROSSING 803(09)

TYPICAL SIGNAL AND CURB LOCATIONS FOR OBTUSE ANGLE $\begin{gathered}803(10) \\ \text { CROSSING }\end{gathered}$

TYPICAL FLASHING LIGHT SIGNAL - POST MOUNTED. TYPICAL SHOULDER WITHOUT CURB

16" Alternate reflectorized
Typical minimum clearance is 2^{\prime} from face of vertical curb to closest part of signal or gate arm in its upright position for a distance of 17^{\prime} above the crown of the roadway.

Where there is no curb, a minimum horizontal clearances of 2^{\prime} from edge of a paved or surfaced shoulder shall be provided with a minimum clearance of 6' from the edge of the traveled roadway where there is no curb or shoulder. the minimum horizontal clearance shall be 6' from the edge of the roadway.

Where gates are located in the median, additional widths may be required to provide the minimum clearance for the counterweight supports.

TYPICAL CLEARANCES FOR FLASHING LIGHT SIGNALS and automatic gates typical curb location

[^0]: CONCRETE TRANSITION BARRIER

[^1]: CONCRETE TRANSITION BARRIER

[^2]: CONCRETE TRANSITION BARRIER 526(33)

[^3]: CONCRETE TRANSITION BARRIER

[^4]: CONCRETE TRANSITION BARRIER 526(36)

[^5]: M 218 = Zinc Coated (Galvanized) Corrugated Steel Pipe
 M 274 = Aluminum Coated (Type 2) Corrugated Steel Pipe
 M 246 = Polymer Pre-coated Galvanized Corrugated Steel Pipe
 M 197 = Corrugated Aluminum Alloy Pipe
 M 278 = Smoothwall PVC pipe
 ASTM F 949 = PVC Corrugated Sewer Pipe with smooth interior
 M 294 SP = Corrugated Polyethylene Pipe with smooth inner liner
 M 252 SP = Corrugated Polyethylene Drainage Tubing with smooth inner liner

[^6]: ~ FRONT ~
 \sim SIDE ~
 ~ SERVICE POLE ~

 ## HIGHWAY LIGHTING

[^7]: CAST IN PLACE REINFORCED CONCRETE STEPS 642(02)

